

Supported by

NSTX Upgrade: ST research to accelerate fusion development

Coll of Wm & Marv Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jon Menard (PPPL)

For the NSTX-U Research Team

FESAC Strategic Planning Panel Meeting **Gaithersburg Marriott - Washingtonian Center**

July 8-10, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

NSTX Upgrade mission elements

- Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)
- Develop solutions for the plasmamaterial interface challenge
- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Liquid metals/Li

NSTX-U provides world-leading research capabilities across all 5 ReNeW Themes

Theme 1: Burning Plasmas in ITER

> Access, understand, control non-linear Alfvénic instabilities

Theme 2: Predictable, High-Performance, Steady-State Plasmas

> Goal: 100% non-inductive operation with high- $\beta_T \sim 15-20\%$, profile control

Theme 3: Taming the Plasma-Material Interface

Leader in Li PFCs, integration: core + snowflake + detachment + high-Z + Li

Theme 4: Harnessing Fusion Power

> Leader in physics basis and design of low-A fusion systems

Theme 5: Optimizing the Magnetic Configuration

NSTX-U most capable ST facility/program in world for assessing ST for FNSF

NSTX-U + DIII-D/U provide world-leading development of ST, AT for FNSF

5 year goal: Establish core physics/scenarios for ST-FNSF 10 year goal: Integrate high-performance core + metal walls

	Establish	ST physics / scenarios	High-performance + metal walls				
2015-2019			2015-2019				
	2× field, po	ower, current, 5× pulse-length	10-20s pulses for PFC/LM equilibration				
100% non- inductive:		Start-up to 0.4MA Ramp-up $0.4 \rightarrow \sim 1MA$ Sustain at $\sim 1MA$ (Density control needed for all phases)	Inform choice of FNSF aspect ratio	Inform choice of FNSF/DEMO plasma-facing			
Red	uce collisio	nality: ~10× lower vs. NSTX	and divertor configuration	materials for			
Sust	tain high β_N	~ 6 with profile/mode control	(with divertor data from MAST-U Super-X +	first-wall			
Mitiç	gate high q _d						
	Divertor C	→ high-Z, Li vapor shielding	All high-Z PFCs, h	not walls, static Li-wall			

Liquid Li modules \rightarrow flowing Li/LM modules \rightarrow flowing Li divertor

ST is potentially attractive as Fusion Nuclear Science Facility (FNSF)

- Projected to access high neutron wall loading at moderate R_0 , P_{fusion} $- W_n \sim 1-2 MW/m^2$, $P_{fus} \sim 50-200MW$, $R_0 \sim 0.8-1.8m$
- Modular, simplified maintenance
- Tritium breeding ratio (TBR) near 1 – Requires sufficiently large R₀, careful design
- Challenges/Gaps: (FESAC-TAP, ReNeW)
 - Non-inductive start-up, ramp-up, sustainment
 ≻Low-A → minimal inboard shield → no/small transformer
 - 2. Confinement scaling (especially electrons)
 - 3. Stability and steady-state control
 - 4. Divertor solutions for high heat flux
 - 5. Radiation-tolerant magnets

Example ST-FNSF concepts

Culham (UK)

UT Austin

Gap 1: Start-up/ramp-up with small/no transformer

Achievements since Greenwald Report, NSTX-U base-program research, remaining gaps/enhancements needed

- Helicity injection (HI) start-up: 150-200kA → projects to ~0.4MA on NSTX-U
- New 2nd NBI projected to enable non-inductive ramp-up from $\sim 0.4 \rightarrow 1MA$
- HI start-up T_e too low for fast-wave or NBI coupling \rightarrow use ECH to raise T_e

1 → 3MW 28GHz (with 2nd NBI) → world-leading start-up/ramp-up for ST/AT
 EBW: efficient off-axis current drive for over-dense ST/RFP/AT plasmas

See Raman Whitepaper: "Simplifying ST and AT Concepts"

Gap 2: Understand/optimize ST energy confinement

Achievements since Greenwald Report, NSTX-U base-program research, remaining gaps/enhancements needed

- Ion thermal transport ~neoclassical, electron transport anomalous
- Confinement scaling: B $\tau_{\rm E}$ ~ v^{-0.9} β ^{-0.2} differs from ITER-98y,2 ~ v⁰ β ^{-0.9}
- High- $\beta \rightarrow$ electromagnetic turbulence (μ -tearing, Alfvénic, kinetic ballooning)
- Doubling I_P, B_T \rightarrow 2× T_{e,i}, but need improved pumping to sustain lowest n_e, v^{*}

- To reliably project to FNSF-ST/AT → need to understand transport vs. β, v
 Diagnostics: Beam emission spectroscopy, high-k_{r,θ}, polarimetry, Doppler back-/cross-polarization scattering
 Leading opportunity to measure, model, understand electron transport
 - See Guttenfelder/Crocker whitepaper "Validating EM turbulence/transport effects for burning plasmas", also A. White whitepaper

Gap 3: Plasma sustainment, stability, and control

Achievements since Greenwald Report, NSTX-U base-program research, remaining gaps/enhancements needed

- NSTX achieved ~65% non-inductive current drive at FNSF-level β_{T} ~ 15-20%
- NSTX-U designed for 100% non-inductive using more tangential 2nd NBI
- TAE avalanches can cause redistribution/loss of NBI current drive
- High $\beta_N \sim 6$ sustained w/ active feedback, optimized/broad p, rotation profiles

- New 3D coils would greatly aid control, disruption avoidance for ITER, FNSF
 Will also test novel disruption warning, mitigation (fast MGI, EM mass injector)
- See Sabbagh whitepaper on Disruption PAM, Podestá whitepaper on energetic particle/*AE control, also Strait, Buttery whitepapers

Gap 4: Mitigating high heat (and particle) flux (+ core/edge integration with high-Z / liquid metal PFCs)

Achievements since Greenwald Report, NSTX-U base-program research, remaining gaps/enhancements needed

- High-flux-expansion snowflake/X-divertor + radiation reduce q_{pk-div} (up to 5x)
- NSTX-U: 2× P_{NBI}, I_P, 0.5× $\lambda_q \rightarrow q_{pk-div} \sim 4 \times higher \rightarrow 30-40$ MW/m² unmitigated
- Will test mitigation of high q_{pk-div} w/ double snowflake/X + partial detachment
- Steady-state FNSF scenario not demonstrated in any device w/ high-Z walls
 → NSTX-U aims to integrate full non-inductive with high-Z + liquid metal PFCs

> See Maingi / Jaworski / Allain whitepapers on liquid metals, Hill whitepaper on FNSF PMI, ADX whitepapers

Gap 5: Radiation-tolerant magnets (+ advanced magnet / configuration design)

- Ex-vessel equilibrium PF coils
 Shielding + MgO insulation → 6 FPY
- Long-leg divertor: $q_{pk-div} < 5MW/m^2$
- TBR = 0.95-1 for $R_0 = 1.6m$

- High-temp superconductor (HTS) attractive for efficient+compact ST*
- Possible missions:
 - Steady-state toroidal PMI facility
 - ST Pilot Plant (Q_{eng}~ 1), ST DEMO
- Key research need: radiation limits *Work supported by Tokamak Energy (UK)
- Find $\tau_E > 1.5 \times ITER$ H-mode needed for compact FNSF, Pilot (ST or AT) • Recommend enhancing AT/ST FNSF design funding, include QAS, SC/HTS

Endorse Majeski / LTX whitepaper for high confinement, Minervini / Whyte whitepapers on HTS R&D

US STs aim to accelerate fusion development (see LTX and Pegasus presentations later this afternoon)

- Advance ST as Fusion Nuclear Science Facility
 Pegasus-U, NSTX-U: non-solenoidal start-up: helicity injection, EBW
 NSTX-U: physics + scenario basis for FNSF-ST (also ST DEMO)
- Develop solutions for plasma-material interface
 LTX-U, NSTX-U: liquid Li for very high confinement, liquid metal PFCs
 NSTX-U: novel divertors: snowflake/X, detachment, vapor shielding
- Explore unique ST parameter regimes to advance predictive capability for ITER and beyond

> Pegasus-U, NSTX-U: high β , toroidicity, MHD / transport validation

NSTX-U: non-linear Alfvénic modes, electromagnetic turbulence

Backup slides

Cost estimates for facility enhancements to address Gaps

NSTX-U 5YP base / +10% sustained for 10 years → \$65M / \$95M for enhancements

4.0		Tool / initiative	2015-19	2020-24	10 yr total (\$M)		
10 year	Gap 1: Start-up / ramp-up with	1MW, 28GHz ECH/EBW	7		7		Ť
total: ~\$19M		Additional 1-2MW (2-3MW total) ECH/EBW		10	10		
	small / no transformer	Steerable mirror		2	2		
	Gap sub-total:		7	12	19		
	Con 2 the density of the stimulate CT	Full polarimetry	1.5		1.5		
*011	Gap 2: Understand / optimize S I	Full 2D high-k	1.5		1.5		
~\$8IVI	energy confinement	Doppler back-scattering	1		1		
	chergy commentent	Cross-polarization scattering	1	3	4		
		5	3	8			
		Lower diverter core pump	7		7	י 1¢65M	Л
		Partial non-avisymmetric control coils (NCC)	7		7	ψυσινί	
400N/	Gap 3: Plasma sustainment,	Flectromagnetic particle injector	1		1		
~\$23111	stability and control	Full non-axisymmetric control coils (NCC)		3	3	\$95	•)5M
	Stability, and control	Enhance MHD sensors: RWM + halo current	2		2		
		Additional NCC power supplies (6 \rightarrow 12 chan)		5	5		
		Gap sub-total:	15	8	23		
			-				
		High-Z lower outboard divertor	3		3		
	Gap 4: Mitigating high heat (and	Divertor I homson scattering		5	5		
~¢12W	norticle) flux core / odge	Flowing liquid Li test module	3		3		
~943101	particle) flux + core / edge	Partial \rightarrow all high-Z PFCs		4	4	_	
	integration w/ high-7 + $IMPECs$	Hot nign-2 PFCs (bakeout system for 350C)		5	5		
		Full toroidal coverage flowing Li divertor		10	10	4	
		TU-2US INBI (PFC thermal/LIVI flow equilibration)	,	15	15		*
		Gap sub-total:	6	39	45		

🔘 NSTX-U

NSTX-U plan: ST physics/scenarios \rightarrow integrate high-perf core + metal walls (high-Z + Li) \rightarrow flowing / large area liquid metals

NSTX-U Test Cell Aerial View (May, 2014) Upgrade project now ~90% complete

NSTX has already accessed shaping and stability performance needed for an ST-FNSF

NSTX-U is developing a range of profile control actuators for detailed physics studies, scenario optimization for FNSF

Rotation Profile Actuators

q-Profile Actuators

Rotation profile control will be an important tool for accessing and sustaining high β

- n=1 MHD spectroscopy: high β_N can be more
 stable → important for advanced scenarios
- For these plasmas, high β_N was correlated with rotation that maximizes RWM damping
 Stabilization from ion precession drift resonance
 Strong motivation for rotation profile control
- 5YP: Off-midplane 3D coils enable control of resonant vs. non-resonant torques, v₆ profile

Simulations support non-inductive start-up/ramp-up strategy

• TSC code successfully simulates CHI $I_{\rm P}$ ~200kA achieved in NSTX

FY14: Implemented NSTX-U geometry in TSC

Poloidal Flux Time Zero = 5 ms, T = 5 ms T = 7.6ms T = 11.5 ms T = 15 ms

 TSC + tools included in 5 year plan support CHI I_P → 400kA in NSTX-U

 $\begin{array}{l} -2.5 \ x \ higher \ injector \ flux \ (scales \ with \ I_P) \\ -Higher \ B_T = 1T \ (increases \ current \ multiplication) \\ -> 2kV \ CHI \ voltage \ (increases \ flux \ injection) \\ -1MW \ 28GHz \ ECH \ (increases \ T_e) \end{array}$

R. Raman (U-Wash)

- TRANSP: NSTX-U more tangential NBI → 3-4x higher CD at low I_P (0.4MA)
 - 1.5-2x higher CD efficiency, 3x lower prompt loss
- New TRANSP simulations of ramp-up: 0.3MA→0.9MA with FW+BS→NBI+BS
 - 1st self-consistent NBI-CD calcs during NI ramp-up

 V_{surface} = 0 constraint → need to add induction from PF coil swing (future)

NSTX-U internal component staging supports goal to assess compatibility of high τ_E and β + 100% NICD with metallic PFCs

NSTX-U will explore advanced divertor operation, and extend scaling and understanding of power exhaust

- NSTX-U: 2× higher I_P and P_{NBI} \rightarrow access q_{II} 4-5× higher than NSTX
- Will ~1/B_P scaling still hold?

See R. Maingi and D. Hill whitepapers

NSTX-U will explore broad range of fast-ion instability physics and control for ITER and FNSF

NSTX-U will explore a new high β + low ν^* transport and turbulence regime

Will access a variety of drift wave and AE transport mechanisms:

- Will $\tau_E \sim 1/v_*$ remain valid?
- Will microtearing be suppressed?
- Will $\chi_i \approx \chi_{i,NC} \& D_{imp} \approx D_{imp,NC}$ hold?

• Is core χ_e from stochastic fields, or midradius KAW excitation \rightarrow e-heating?

> See Guttenfelder/Crocker whitepaper on electromagnetic effects in transport

Self-consistent ST configurations identified for Fusion Nuclear Science Facility (FNSF)

- Current drive: bootstrap + NNBI
- Neutron wall loading ~1 MW/m²
- Tritium breeding ratio (TBR) ~ 1
 - Requires breeding blanket near top + bottom of centerstack (CS)
- PF coil configuration:
 - Strong shaping (κ ~ 2.8-3, δ ~ 0.5-0.6)
 - Flexibility in equilibrium β_{N} and \textbf{I}_{i}
 - All equilibrium PF coils are ex-vessel
 - Long-legged Super-X/snowflake divertor
 - $q_{peak} \sim 3-5 MW/m^2$, partially detached
 - Breeding in CS end region + vertical maintenance scheme
- Exploring plasma start-up options
 - Identified locations for electrodes for coaxial helicity injection (CHI) start-up
 - Retractable plasma "guns" may be more compatible with FNSF environment

Blanket regions

$$R_0 = 1.6m, B_T = 3T, I_P = 10MA, P_{fus} = 160MW$$

$H_{98y,2}$ range of 1.4-2.2 favorable for achieving FNSF-relevant neutron wall loading \geq 1MW/m², f_{BS} < 85% for external control

<u>ST-FNSF</u>

- A = 1.75
- $R_0 = 1.7m$
- B_T = 2.9T
- κ , δ = 2.8, 0.55
- $f_{Greenwald} = 0.8$
- f_{NICD} = 100%
- $E_{NNBI} = 0.5 MeV$
- $P_{NNBI} \le 80MW$

Power limited for $H_{98y,2} < 1.5$ Stability limited for $H_{98y,2} > 1.6$

NNBI CD efficiency vs. injection tangency radius and energy for R=1.6m using TRANSP

Free-boundary TRANSP used to compute 100% non-inductive Q_{DT} ~ 2 plasma equilibrium consistent with 0D scalings

- TRANSP-ISOLVER (boundary-fit)
- Neoclassical χ_i
- Scaled NSTX T_e, n_e $-Z_{eff} \sim 2-2.5$
- $n_e / n_{Greenwald} = 0.65$
- I_P = 9.8MA, B_T = 2.9T
- H_{98,y2} = 1.55
- $\beta_N = 5.9, W_{tot} = 67MJ$ - $W_{fast} / W_{tot} = 14\%$
- $f_{NICD} = 100\%, f_{BS} = 65\%$
- E_{NNBI} = 0.5MeV
- P_{NNBI} = 80MW
- $P_{fusion} = 160MW$ (50-50 DT) - ~3% alpha bad orbit loss

Ideas to enhance TBR for latest ST-FNSF design

- Uniform OB blanket (1 m thick everywhere; no thinning)
- Less cooling channels and FCIs within blanket
 Need thermal analysis to confirm
- Replace PF coil shield and triangle by blanket (TBD)
- Thicker IB VV with internal breeding
- Smaller opening to divertor to reduce n leakage

HTS potentially attractive for making electrically efficient ST* (~10× lower magnet cooling power vs. copper)

R₀ = 1.4m, B_T = 3.2T, I_P = 7-8MA, P_{fusion-DT} = 100MW *This work supported by Tokamak Energy (UK)

- Possible missions:
 - Steady-state toroidal PMI facility
 - ST Pilot Plant (Q_{eng}~1 for weeks/months)
- Initial configurations favorable:
 - A=1.8 w/ strong shaping: $\kappa \text{~-}2.7, \, \delta \text{~-}0.5$
 - All equilibrium PF coils outside TF
 - No joints needed for HTS TF coils
 - Long-legged divertor for $q_{div-pk} < 5MW/m^2$
 - Vertical port-based maintenance
 - WC inboard thermal shield for TF
- Many remaining issues:
- HTS lifetime in radiation environment
- Blanket/shield thickness, location, TBR

Endorse Minervini / Whyte whitepapers for HTS R&D

🔘 NSTX-U