

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Analysis and modeling of current rampup dynamics in NSTX and NSTX-U

Devon Battaglia, Dan Boyer, Pat Vail,

Francesca Poli, Stefan Gerhardt

on behalf of the ASC TSG

FY2017 Q2 Research Milestone Status March 31, 2017

H-mode flattop performance depends on the I_p ramp-up

NSTX fiducial had L-H transition before 150ms - I_i ~ 0.5, κ ~ 2.4 with P_{NBI} = 5.8 MW

- NSTX-U: progress in obtaining early L-H transition, higher I_p and κ -202946 \rightarrow 203679 \rightarrow 204112
 - Enabled by increase in P_{NBI}, improvements in shape control, EFC
- Access to higher I_p (> 1.6 MA) and κ (> 2.4) requires further ramp-up development during next run

Goals for R(17-5): Analysis and modeling of current ramp-up dynamics

- Evaluate elongation limits during ramp-up phase using data and calculations
 - What factors limit the elongation before, during and after diverting?
 - Identify growth rate of vertical instability to predict controllability of high-κ shapes
- Establish the dependence of the L-H transition on density, plasma shape, etc. to inform modeling of threshold criteria and scenario targets
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up
- Prepare for R18-6: establish TOKSYS framework for testing and optimizing control

Modeling framework aims to accelerate ramp-up scenario and control development

- TOKSYS: Matlab code used to develop actuator and plasma models for testing PCS algorithms (supported by GA)
- Two major development efforts
 - Design and validate plasma model using experimental data and simulations (i.e. TRANSP, DCON)
 - Develop non-linear models and/or switching between linear models
 - Flattop modeling typically uses linearized model around a reference case
- Ultimate goal: develop, test and optimize scenarios and control in the ramp-up phase in offline simulations

Recent progress in establishing TOKSYS simulations for NSTX-U

- Vessel current model, linearized axisymmetric plasma response model and synthetic magnetic signals generated
 - Supports snowflake control development and testing
 - Validation of plasma response model will begin soon
- Power supply models have been developed
 - Model includes simplified bridge rectifier model
 - Working toward end-to-end optimization of vertical stability
- Recently demonstrated coupling between PCS and the models within TOKSYS
 - Some bugs are being worked out with support from GA

Several activities are underway to study elongation limit set by vertical stability

- Database of achieved elongation at time of maximum stored energy and maximum elongation
- Database of VDE times on NSTX-U and NSTX
 - Quantify disruptivity at different operating points
 - Quantify trigger mechanisms and stability boundaries
- VDE growth rate calculation
 - Evaluate dependences of growth rate (gaps, wall current ...)
 - Extend calculation to planned operating points
- Database of vertical motion (bobble) at time of diverting

Growth rate calculations will allow projection of NSTX-U limits to lower I_i

 Calculations within ISOLVER quantify open loop vertical growth rate [Menard]

- Evaluate growth rate just prior to VDE time

- Maximum growth rates for NSTX-U and NSTX are similar
 - Good! Suggests we can do as well as NSTX at low I_i
- Many 'VDEs' occur below limit ~ 140 1/s
 - Probably have different triggers, e.g., locked modes
 - Will refine filtering of VDE database (DECAF)

Vertical "bobble" observed near time of diverting, far away from expected k limits

- Machine learning used to automatically identify instances of bobbles
- Using database to determine parameter regimes and/or root causes

Database of L-H transitions and corresponding L-mode shots

- Identify important dependences of L-H transition power threshold to guide modeling and experiments
- Most shots are very dynamic around L-H transition
 - Transitioning from limited to diverted
 - Large dI_p/dt and dW/dt during ramp-up
 - $P_{LH} = \xi P_{NBI} + P_{OH} dW/dt$
 - Many shape parameters (gapin, d_{rsep}) not stationary
- Created a database of L-H and L-mode times
 - NBI efficiency presently computed using simple model benchmarked against BEAST data for all L-mode times
 - Will need to run TRANSP runs for subset of interest to really quantify P_{LH}
 - Most useful result (so far) has been identifying range in parameters that preferentially excludes L-mode dataset

Dataset confirms experimental observation that d_{rsep} and V_{surf} influence P_{LH}

- Dataset of 68 L-H times and 101 L-mode times
 L-H in a limited shape are excluded
- If the dataset is restricted by ...
 - $-n_{e} > 1.2 \times 10^{19} \text{ m}^{-3}$
 - $-0.7 < V_{surf} < 1.2$
 - Minimum P_{LH} near V_{surf} = 0.95 V
 - Surprising to see P_{LH} increase below V_{surf} = 1V
 - $--0.4 < d_{rsep} < 0.8$
 - L-H seemed to favor USN ?
 - Minimum P_{LH} near d_{rsep} = +0.2
- 5 L-mode (5%) and 43 (63%) L-H times remain in constrained dataset

– Most of L-H times removed had $P_{LH} > 3 \times minimum P_{LH}$

Plans for Q3

 Create vertical stability probability relationship (disruptivity) from the NSTX database, compare to NSTX-U results

Aided by continued efforts to refine detection and classification of VDEs

- Extend NSTX-U growth rate calculations to higher κ shapes
 - Requires generating a set of target equilibria
- Continue to investigate 'The Bobble' at time of diverting
 - What parameters impact the amplitude and decay period?
- Identify subset of discharges where TRANSP runs would help identify P_{LH}
 - Expand database to include NSTX discharges
 - Strong V_{loop} dependence is of particular interest as a constraint on the scenario
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up
- Continue debugging TOKSYS and incorporate GS solver (GSEVOLVE)
 - Continue development and validation of power supply and plasma models