

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

R(17-3): Identification, mitigation, and correction of intrinsic error field sources

C. E. Myers, J.-K. Park, N. M. Ferraro

Research Milestone Status Meeting May 25, 2017

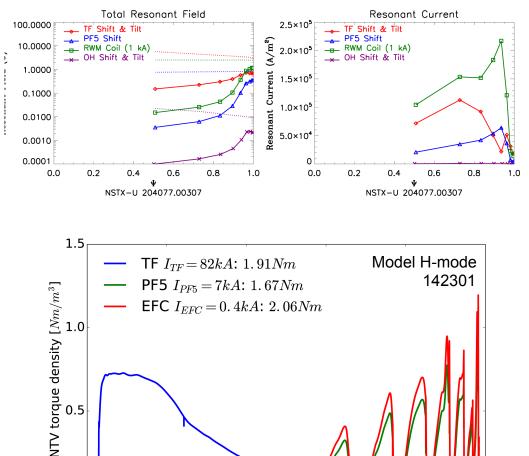
Milestone and Recovery Project charges

• R(17-3) Milestone:

Identify, mitigate, and develop correction strategies for intrinsic error field sources in NSTX-U

• Recovery Project charge:

Carry out data analysis, coil metrology, and numerical modeling of error fields to recommend a tolerance for the TF alignment upon reassembly



Today's presentation

- What we presented last time (31 March 2017):
 - Experimental results from the FY16 NSTX-U campaign
 - Error field source metrology (PF5 radius and TF tilt)
 - Vacuum error field and plasma response modeling
- Error field assessment report:
 - Report issued to Recovery Project on 30 April
 - Examine effects of both resonant error fields and NTV
 - Recommended TF alignment tolerance of $\leq 2 \text{ mm}$ (×3 reduction)
- Milestone action items:
 - Additional ex-vessel coil metrology (PF5 vertical plane, etc.)
 - Develop plan for center stack reinstallation / realignment
 - Develop plan for possible in-vessel vacuum field measurements

Modeling results \rightarrow 2 mm tolerance

- Metrology → coil shape models
 Feed to IPEC & M3D-C1
- Resonant fields and currents:
 - TF error field is dominant
 - TF EF phase not constant
 - Difficult to correct
- Neoclassical toroidal viscosity:
 - RWM coils are poorly matched to TF NTV spectrum
- Tolerance of 2 mm:
 - Resonant fields below locking threshold without EFC
 - Reduces TF NTV by 10×

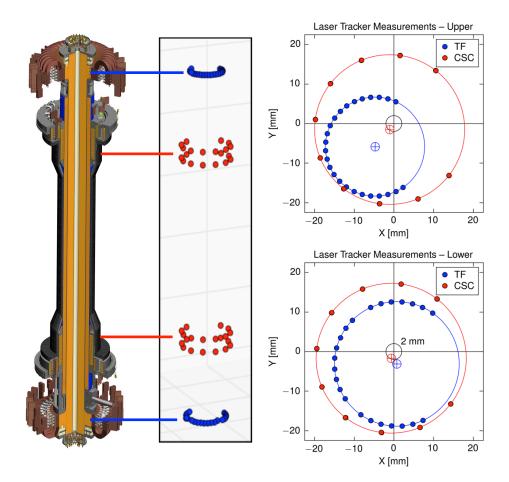
0.4

 ψ_N

0.6

0.8

0.0


0.2

Metrology conducted on TF bundle and CS casing

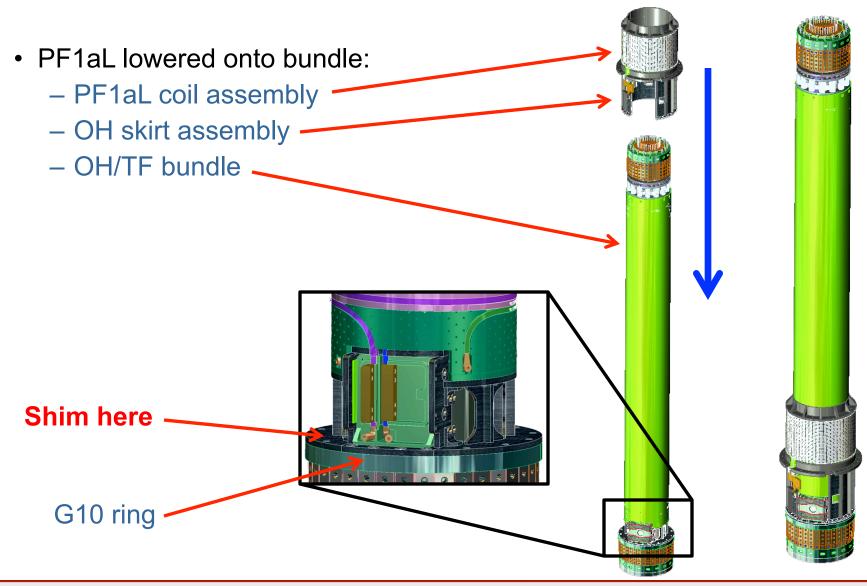
- TF bundle shift and tilt is larger than the CS casing shift and tilt
- CS casing (CSC) alignment encroaches on 2 mm tolerance
- CSC alignment will be different with new polar region hardware

	Shift	Tilt
Casing	1.8 mm	0.2 mrad (~ 0.8 mm)
TF bundle	4.9 mm	1.2 mrad (~ 6 mm)

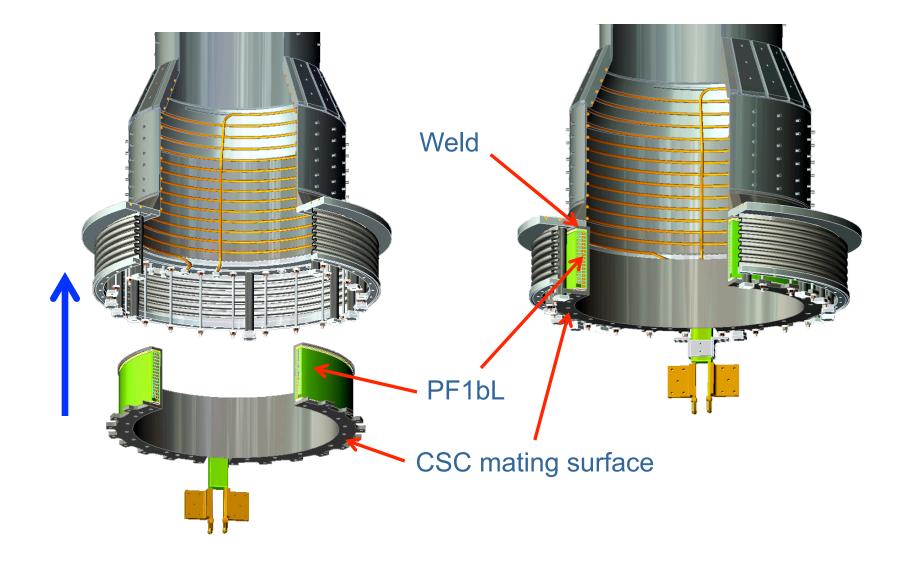
Measurements of TF bundle w.r.t. casing (2016)

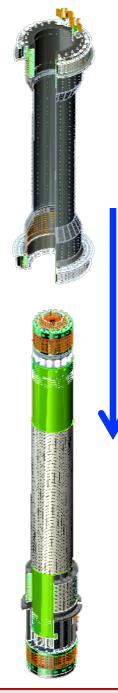
What is meant by vertical? \rightarrow additional metrology

- To what vertical axis should we align the TF bundle?
 - Outer vessel axis?
 - ROMER coordinate system z-axis (set by monuments)
 - Axis of nozzle flanges (upper and lower)
 - PF5 coil plane normal vector? \rightarrow upper or lower coil?
- Additional metrology required:
 - Reexamine existing outer vessel metrology:
 - Reference the ROMER system to gravity?
 - What is the alignment of the upper and lower outer vessel nozzles?
 - New metrology to determine the PF5U/L coil planes
 - Use laser tracker to project ROMER system out of the vessel
 - Consider shimming the PF5 coils pending these results
 - These efforts are getting underway


Preliminary realignment / reinstallation plan

- Present configuration:
 OH/TF bundle in SHB
 CS casing in SHB
- Two phases of realignment and reinstallation:
 - Placement of the casing over the OH/TF bundle (South High Bay)
 - Placement of casing/bundle assembly in the machine (NTC)
- Realignment considerations:
 - Shim casing w.r.t. bundle
 - 10× lever arm ~ 0.5 mm shim
 - BUT casing mating surface will be different → polar region changes

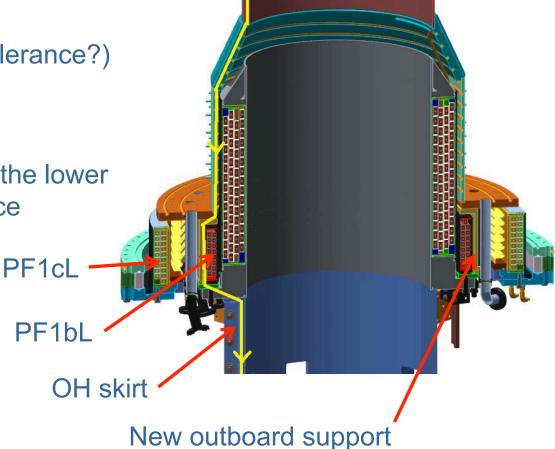

Note: Images are from 2011 FDR and do not reflect Recovery Project design changes.



First shimming opportunity: PF1aL coil installation

Present design: PF1bL provides CSC mating surface

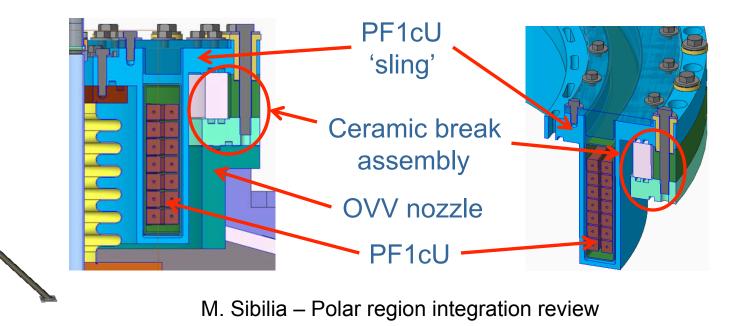
Second shimming opportunity: casing support


- Lower the casing over the bundle (left)
- CSC rests on top of OH skirt
 - At present PF1bL provides the mating surface
 - Second opportunity for shimming
- Repeat CSC $\leftarrow \rightarrow$ TF metrology to verify alignment

NSTX-U

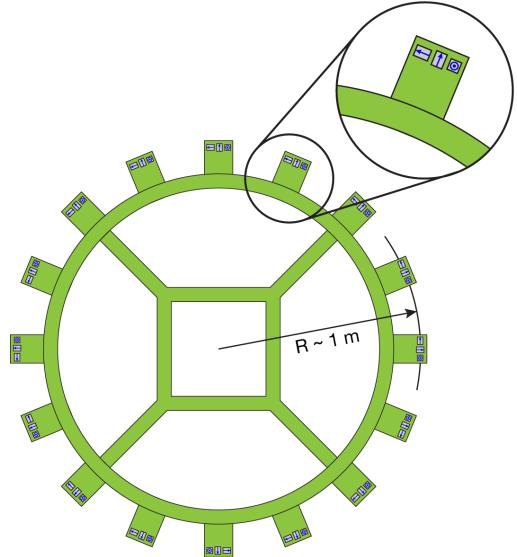
Consider post-machining new CSC mating surface

- Present configuration:
 - PF1bL sits on OH skirt
 - PF1bL welded to CSC (tolerance?)
- New configuration:
 - Outboard support
 - Consider post-machining the lower surface to ensure tolerance



M. Sibilia – Polar region integration review

Casing must align to outer vessel \rightarrow affects TF


- Alignment dictated by the casing mating to the outer vessel nozzles → TF along for the ride
- Exploring whether engineers can provide a few millimeters of flexibility in the new -1c sling assembly
- Use ROMER arm to assess CS alignment upon reinstallation

NSTX-U

In-vessel magnetic measurements

- Deploy in-vessel magnetics rig during possible coil validation testing of outer PF coils:
 - Directly measure error fields from each coil (DC, AC)
- Tentative specifications:
 - 48 sensors (16×3 B_Z , B_R , B_T)
 - Difference opposing sensors
 - Requires 24 new integrators
 - Calibrate each set of sensors on bench with Helmholtz coils
 - Position with ROMER arm
 - Move rig vertically in vessel
 → multiple horizontal planes

R(17-3) milestone summary

- Error field assessment report:
 - Report issued to Recovery Project on 30 April
 - Recommended TF alignment tolerance of $\leq 2 \text{ mm}$ (×3 reduction)
- Additional metrology and magnetic measurements:
 - Ex-vessel metrology of PF5 coils \rightarrow coil plane w.r.t. ROMER system
 - Define the vertical axis to which the TF should be aligned
 - In-vessel magnetic measurements during outer PF validation testing
- Reinstallation and realignment planning:
 - Shim and/or post-machine CS casing to ensure TF bundle is centered
 - Repeat CSC / TF metrology to verify alignment
 - Design mm's of flexibility into -1c slings to facilitate CS alignment (?)
 - Use ROMER arm to quantify CS alignment upon installation