

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

R17-5 Q3 Review: Analysis and modeling of current ramp-up dynamics on NSTX and NSTX-U

Devon Battaglia, Dan Boyer, Pat Vail, Francesca Poli, Stefan Gerhardt, Doohyun Kim on behalf of the ASC TSG

> FY2017 Q3 Research Milestone Status May 25, 2017

R(17-5): Analysis & modeling of current ramp-up dynamics

- Evaluate elongation limits during ramp-up phase using data and calculations
 - What factors limit the elongation before, during and after diverting?
 - Identify growth rate of vertical instability to predict controllability of high-κ shapes
- Establish the dependence of the L-H transition on density, plasma shape, etc. to inform modeling of threshold criteria and scenario targets
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up
- Prepare for R18-6: establish TOKSYS framework for testing and optimizing control
- Prepare for R18-6: begin TRANSP analysis of ramp-up phase

Action items from March 31rst meeting

- Carry out TRANSP simulations of early-H-mode ramp-ups, then play with H-mode timing, heating, etc. to begin to understand and predict ramp-up evolution - try to get initial simulations during next few months.
 - Simulation of NSTX ramp up is underway to test / refine TRANSP assumptions and models.
 - This work not explicitly mentioned in FY17 milestone, will produce great results for FY18.
- Complete engineering model of NSTX-U power-supplies to characterize controllability and control power requirements for vertical control of 2MA shots
 - Simulink model of switching power supplies is progressing
 - Comparison to more comprehensive power supply models should occur in the near future

Plans for FY17 Q3 (as stated in Q2)

- Create vertical stability probability relationship (disruptivity) from the NSTX database, compare to NSTX-U results
 - Slides follow
- Extend NSTX-U growth rate calculations to higher κ shapes
 Defer to Q4
- Continue to investigate 'The Bobble' at time of diverting

 Slides follow
- Identify subset of discharges where TRANSP runs would help identify P_{LH}
 Defer to Q4
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up

 Defer to Q4
- Continue debugging TOKSYS and incorporate GS solver (GSEVOLVE)
 - Slides follow
 - GA is supporting debugging activity

Ongoing activities studying vertical control limits in ramp-up and flat-top

- Exploration of disruptivity and stability boundaries
 - Database of VDE times on NSTX-U and NSTX generated
 - Working on removing shots that disrupted due to other initial causes → will be working with DECAF team
 - Growth rate calculations at start of VDE using ISOLVER
 - Defining empirical disruptivity in terms of growth rate should allow for extrapolating stability boundary to planned future equilibria
- Database of vertical motion at time of diverting
 - Classification of different behaviors
 - Working to identify cause and understand contributing factors to severity of undesirable behaviors, e.g., the 'bobble'

Histograms of NSTX/NSTX-U equilibrium operating space and VDEs

Number of EFIT01 slices: All NSTX-U shots, NSTX shots > 140000

Number of VDEs: All NSTX-U shots, NSTX shots > 140000, Only VDEs that start in flattop phase

Database will be used to examine disruptivity of plasma scenarios

Disruptivity: Number of VDEs/ Number of EFIT01 slices

- Plans
 - Extend NSTX analysis to include all shots
 - Include additional equilibrium parameters in histograms
 - Work with DECAF team to exclude VDEs triggered by other disruptions
 - Fit disruptivity to equilibrium parameters, map to growth rate

Database of oscillations around time of diverting (the 'bobble') provides insight into root cause

 Bobble appears to occur most frequently in a range of shots with positive dr_{sep} at time of diverting

0.04

0.02

0.00

-0.02

-0.04

203600

203800

204000

Shot

 dr_{sep}

204800

205000

204600

Oscillations between USN and LSN could be driven by control response

- Appears to be sustained by rapid plasma motion at time of crossing dr_{sep}=0
- Bobble may be initiated by shape control errors when transitioning between ISOFLUX phases

- Efforts to improve/remove transitions seemed to help during campaign

- Plan to model transitions and the effect of dr_{sep} zero crossings in TOKSYS
 - Modify transition logic and control gains to reduce or avoid bobble

Overview of TokSys framework development in Q3

- Coupled LR circuit model for coils and passive conductors (vacuum model)
 - Vacuum model fully-validated against NSTX-U coils-only shots
- Linear plasma response models developed
 - Validation in progress
- Framework developed for simulating ISOFLUX shape control and tuning controller gains
 - Nonlinear plasma simulation called GSEVOLVE in-development (Anders Welander, General Atomics)
- Simulink-to-PCS link demonstrated (Simserver)

Vacuum model and synthetic magnetic signals in good agreement with NSTX-U data

NSTX-U

R(17-5) Q3 Milestone Status, D.J. Battaglia, March 31, 2017

Simulation tool can be used for development

- and optimization of shape control algorithms
 - MIMO shape control
 - Advanced divertor control

NSTX-U

Linear plasma response model has been developed and applied to shape control testing

- Linear simulation tool has been developed in Simulink for control design
 - Validated vacuum model
 - Plasma response linearized around an equilibrium
- Tool has been used for testing several algorithms
 - ISOFLUX shape control
 - Tuning of PID gains for ISOFLUX segment errors
 - Strike point control demo (right)
 - Snowflake control

Nonlinear plasma simulation GSEVOLVE is under development A. Welander

- Implemented in Simulink
- Simulink module which solves the Grad-Shafranov equation
 - Inputs: PF coil power supply voltages, model for heating and current drive
 - Outputs: PF coil currents, magnetic diagnostic signals
- Capable of simulating an entire NSTX-U discharge
 chot 204118 (right)
 - shot 204118 (right)
- Enables test of control algorithms in dynamic phases, such as ramp-up

Plans for Q4

- Extend NSTX-U growth rate calculations to higher κ shapes
- Perform TRANSP runs that would help identify P_{LH} scaling with plasma parameters
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up
- Refine disruptivity analysis by examining dependence with other plasma parameters

Backup

H-mode flattop performance depends on the I_p ramp-up

NSTX fiducial had L-H transition before 150ms - I_i ~ 0.5, κ ~ 2.4 with P_{NBI} = 5.8 MW

- NSTX-U: progress in obtaining early L-H transition, higher I_p and κ -202946 \rightarrow 203679 \rightarrow 204112
 - Enabled by increase in P_{NBI}, improvements in shape control, EFC
- Access to higher I_p (> 1.6 MA) and κ (> 2.4) requires further ramp-up development during next run

Growth rate calculations will allow projection of NSTX-U limits to lower I_i

 Calculations within ISOLVER quantify open loop vertical growth rate [Menard]

- Evaluate growth rate just prior to VDE time

- Maximum growth rates for NSTX-U and NSTX are similar
 - Good! Suggests we can do as well as NSTX at low I_i
- Many 'VDEs' occur below limit ~ 140 1/s
 - Probably have different triggers, e.g., locked modes
 - Will refine filtering of VDE database (DECAF)

Database of L-H transitions and corresponding L-mode shots

- Identify important dependences of L-H transition power threshold to guide modeling and experiments
- Most shots are very dynamic around L-H transition
 - Transitioning from limited to diverted
 - Large dI_p/dt and dW/dt during ramp-up
 - $P_{LH} = \xi P_{NBI} + P_{OH} dW/dt$
 - Many shape parameters (gapin, d_{rsep}) not stationary
- Created a database of L-H and L-mode times
 - NBI efficiency presently computed using simple model benchmarked against BEAST data for all L-mode times
 - Will need to run TRANSP runs for subset of interest to really quantify P_{LH}
 - Most useful result (so far) has been identifying range in parameters that preferentially excludes L-mode dataset

Dataset confirms experimental observation that d_{rsep} and V_{surf} influence P_{LH}

- Dataset of 68 L-H times and 101 L-mode times
 L-H in a limited shape are excluded
- If the dataset is restricted by ...
 - $-n_{e} > 1.2 \times 10^{19} \text{ m}^{-3}$
 - $-0.7 < V_{surf} < 1.2$
 - Minimum P_{LH} near V_{surf} = 0.95 V
 - Surprising to see P_{LH} increase below V_{surf} = 1V
 - $--0.4 < d_{rsep} < 0.8$
 - L-H seemed to favor USN ?
 - Minimum P_{LH} near d_{rsep} = +0.2
- 5 L-mode (5%) and 43 (63%) L-H times remain in constrained dataset

– Most of L-H times removed had $P_{LH} > 3 \times minimum P_{LH}$