

Overview of NSTX-U Research Program Progress and Plans

J. Menard, PPPL

For the NSTX-U Research Team

NSTX-U PAC 37 PPPL B318 January 26-28, 2016

Outline

- Events since PAC-35
- Charge Questions
- Mission and Capabilities of NSTX-U
- Research Goals and Milestones
- Key Scientific Issues NSTX-U Will Address
- Organizational Structure
- Run Coordination
- Support for FESAC / FES Strategic Goals
- Summary

- Strong APS meeting participation
 - 2014: 1 ST review talk, 5 NSTX invited talks, 44 posters
 - 2015: 3 NSTX invited talks (+4 by team-members), 54 posters
- L. Delgado-Aparicio: DOE Early Career Award for research on impurity transport and control

- Multitude of technical NSTX-U / next-step presentations at 2015 SOFE, Li Symposium, IAEA-TM on divertors
- International ST Workshop: 78 talks+posters, 50% international
- 45 refereed publications for FY2015
- 34 IAEA FEC 2016 synopses on NSTX-U + ST-FNSF

- Collaborative research contributions made in range of topics directly relevant to NSTX-U program
 - DIII-D: Pedestal transport, fast-ions instabilities, RWM / RFA, QH-mode TEM particle transport, Li dropper, granule injector, snowflake/X divertors
 - EAST: Lithium coating / wall physics, flowing liquid Li limiter
 - KSTAR: NTV rotation damping, error fields, RMP
 - C-Mod: ELM cycle / pedestal structure, high-Z spectroscopy
 - MAST / York: Momentum transport studies / SAMI diagnostic
 - QUEST: CHI + ECH start-up research, EBW-CD start-up modelling (new)
 - ITPA halo current data / studies: DIII-D, AUG, C-Mod (+ NSTX / NSTX-U)

Reminder: Project / Program events since PAC-35

- Successful vessel pump-down (December 2014)
- Team-wide Research Forum (February 2015)
- Commissioning for 1st plasma, OH arc fault (April)
- PAC-36 program letter, arc fault discussion (June)
- Arc recovery, corrective actions (May)
- First test plasma: $110 \rightarrow 140$ kA, 0.5T (August)
- Bake, facility / diagnostic commissioning (Fall)
- Plasma commissioning: 800kA, 0.6T (late December)
- Diverted NBI H-mode achieved (January 2016)

Just begun operating! PAC input very timely, valuable

Presentations / agenda organized to aid you / PAC-37 in addressing charge questions

• Please assess the research planned to be carried out for the NSTX-U FY2016 experimental campaign

- Are there any major missing elements, or new opportunities?

- Please assess the alignment between the NSTX-U research plans and goals and the FESAC / FES initiatives, research opportunities, and ITER urgent research needs.
- Please comment on the progress and plans for the NSTX-U / PPPL theory partnership, and how well this partnership and the broader NSTX-U research activities support "integrated predictive capability".
- Please comment on the present team prioritization of planned facility enhancements including:

NSTX-U

 Divertor cryo-pump, non-axisymmetric control coils (NCC), 28GHz gyrotron, conversion to high-Z PFCs + liquid metals research

Key Presentations:

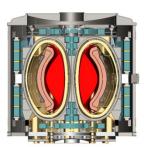
- Menard, Ono, Maingi, Kaye, Gerhardt
- ◄ All (except Ono)

 Bhattacharjee, Boyer, Poli

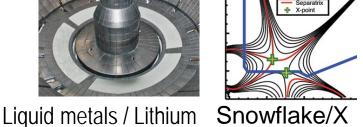
 Menard, Ono, Maingi, Kaye, Gerhardt, Jaworski, Sabbagh

Outline

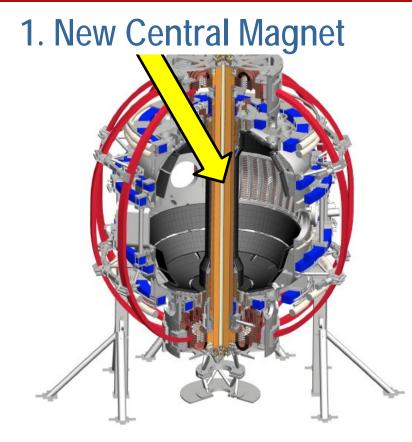
- Events since PAC-35
- Charge Questions
- Mission and Capabilities of NSTX-U
- Research Goals and Milestones
- Key Scientific Issues NSTX-U Will Address
- Organizational Structure
- Run Coordination
- Support for FESAC / FES Strategic Goals
- Summary

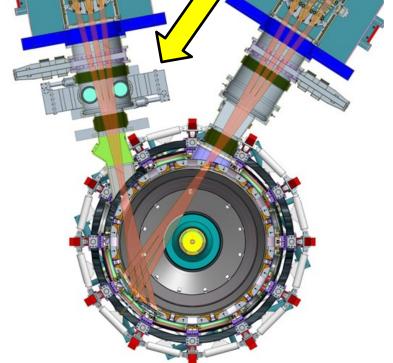

NSTX-U Mission Elements:

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)


 Advance ST as Fusion Nuclear Science Facility and Pilot Plant

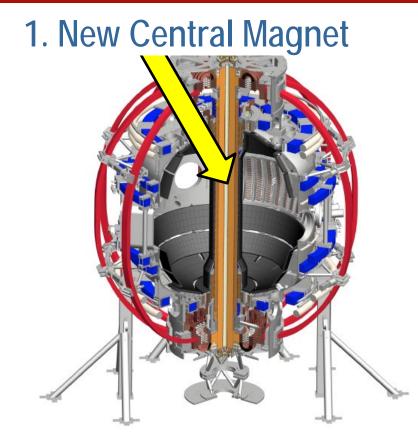
ST-FNSF / **Pilot-Plant**



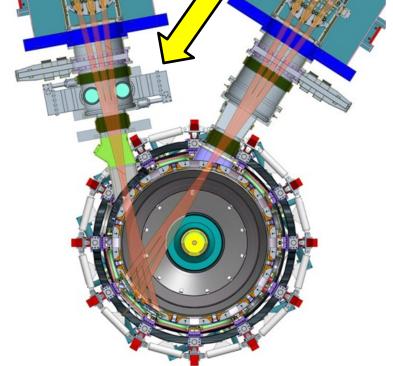


ITER

NSTX-U will access new physics with 2 major new tools:



2. Tangential 2nd Neutral Beam



<u>Higher T, low v^* from low to high β </u> \rightarrow Unique regime, study new transport and stability physics Full non-inductive current drive
 → Not demonstrated in ST at high-β_T Essential for any future steady-state ST

NSTX-U will have major boost in performance

2. Tangential 2nd Neutral Beam

- >2× toroidal field (0.5 → 1T)
 >2× plasma current (1 → 2MA)
 >5× longer pulse (1 → 5s)
- >2× heating power (5 → 10MW)
 Tangential NBI → 2× current drive efficiency
 >4× divertor heat flux (→ ITER levels)
 >Up to 10× higher nTτ_E (~MJ plasmas)

Outline

- Events since PAC-35
- Charge Questions
- Mission and Capabilities of NSTX-U
- Research Goals and Milestones
- Key Scientific Issues NSTX-U Will Address
- Organizational Structure
- Run Coordination
- Support for FESAC / FES Strategic Goals
- Summary

5 year goal: Establish core physics/scenarios for ST 10 year goal: Integrate high-performance core + metal walls

First 5 years Second 5 years Establish ST physics / scenarios: High-performance + metal walls Confinement vs. β, collisionality Convert all PFCs from C to high-Z • Sustain high β with advanced control • Static \rightarrow flowing Li divertor module(s), full toroidal flowing Li divertor, high T_{wall} Non-inductive start-up, ramp-up •5s → 10-20s for PFC/LM equilibration • Mitigate high heat fluxes Assess ST with high-Z, high-Z + Li Test high-Z divertor, Li vapor shielding Inform choice of Inform choice of FNSF / DEMO plasma facing materials: FNSF configuration: • Lower A or higher A?

- High-Z consequences? need high-Z + Li?
 - Assess for both divertor and first-wall

Standard, snowflake, Super-X (MAST-U)?

Summary of FY2016-18 NSTX-U Research Milestones

• FY2016	
 Obtain 1st data at 60% higher field/current, 2-3× longer pulse Re-establish sustained low I_i / high-κ operation above no-wall limit Study thermal confinement, pedestal structure, SOL widths Assess current-drive, fast-ion instabilities from new 2nd NBI 	<u>Milestone #</u> R16-3 R16-1 R16-2
• FY2017	
 Extend NSTX-U performance to full field, current (1T, 2MA) Assess divertor heat flux mitigation, confinement at full parameters Access full non-inductive, small current over-drive First 2D high-k scattering, test prototype high-Z tiles, HHFW FY2018 	R17-1,3 R17-4 R17-2 IR17-1
 Study low-Z and high-Z impurity transport 	R18-1
 Assess causes of core electron thermal transport 	IR18-2
 Test advanced q profile and rotation profile control 	R18-2
 Assess CHI plasma current start-up performance 	R18-3
 Divertor power and momentum balance (vapor shielding) 	IR18-1
NSTX-U NSTX-U Program Overview – PAC-37 – January 26-28, 2016	13

NSTX-U Milestone Schedule for FY2016-18

	FY2016	FY2017	FY2018
Run Weeks: Incr	remental 18	16 18	12 16
Boundary Science + Particle Control	R16-1 Assess H-mode confinement, pedestal, SOL characteristics at higher B _T , I _P , P _{NBI}	R17-1 Assess scaling, mitigation of steady- state, transient heat-fluxes w/ advanced divertor operation at high power density R17-2 Assess high-Z divertor PFC performance and impact on operating scenarios	R18-1 Assess impurity sources and edge and core impurity transport IR18-1 Investigation of power and momentum balance for high density and impurity fraction divertor operation
Core Science	R16-2 Assess effects of NBI injection on fast- ion f(v) and NBI-CD profile	R17-3 Assess τ_E and local transport and turbulence at low ν^* with full confinement and diagnostic capabilities	R18-2 Assess role of fast-ion driven instabilities versus micro-turbulence in plasma thermal energy transport Begin ~1 year outage for major facility enhancement(s) sometime during FY2018
Integrated Scenarios	R16-3 Develop physics + operational tools for high-performance: κ , δ , β , EF/RWM	IR17-1 Assess fast-wave SOL losses, core thermal and fast ion interactions at increased field and current R17-4 Develop high-non-inductive fraction NBI H-modes for sustainment and ramp-up	R18-2 Control of current and rotation profiles to improve global stability limits and extend high performance operation R18-3 Assess transient CHI current start-up potential in NSTX-U
FES 3 Facility Joint Research Target (JRT)	C-Mod leads JRT Assess disruption mitigation, initial tests of real-time warning, prediction	DIII-D leads JRT Examine effect of configuration on operating space for dissipative divertors	NSTX-U leads JRT TBD

Motivations for next major facility enhancements One (maybe 2) enhancement(s) feasible / affordable for FY18-19 outage

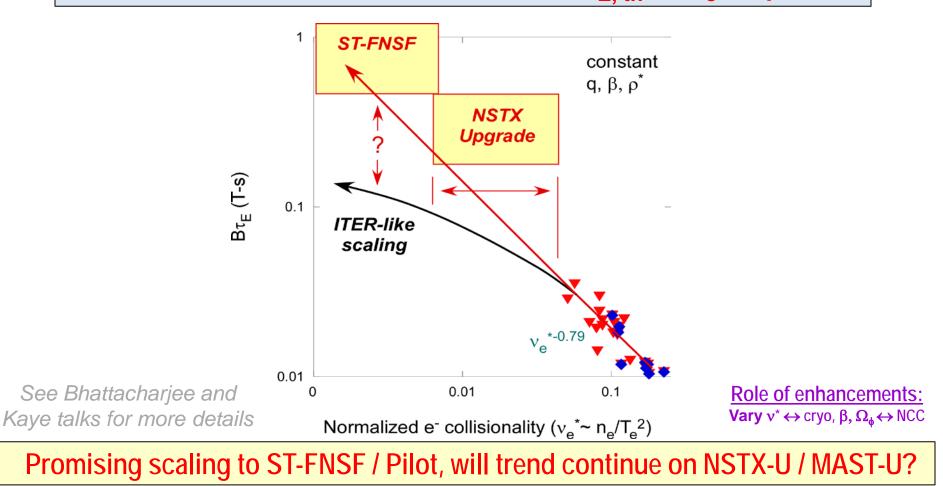
1. Divertor cryo-pump with high-Z baffle

- Control density and v^* without Li, compare to Li
- Accelerate transition to high-Z PFCs, support
- liquid metal tests with bakeable baffle


2. Non-axisymmetric control coils (NCC)

- Resonant, non-resonant NTV rotation control
- RMP ELM suppression (not yet achieved in ST)
- Enhanced RWM/EF control

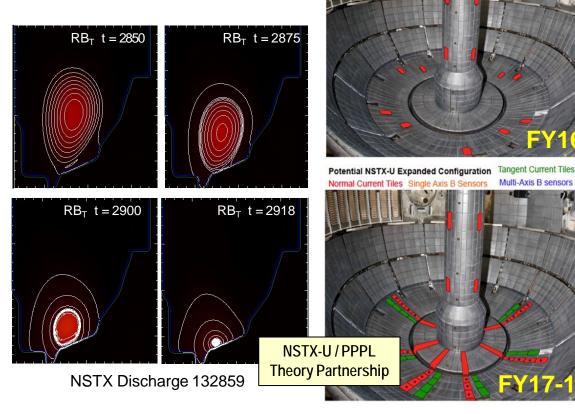
3. 28GHz / 1MW gyrotron (Tsukuba)


- Heat CHI target w/ ECH for HHFW
- EC/EBW-only CD for start-up
- Longer-term: EBW CD for sustainment


Favorable confinement trend with collisionality and β found in ST experiments

ST scaling observed in NSTX and MAST: $\tau_{E, th} \propto \nu_{*e}^{-0.8} \beta^{-0.0}$ Tokamak empirical scaling (ITER 98y,2): $\tau_{E, th} \propto \nu_{*e}^{-0.1} \beta^{-0.9}$

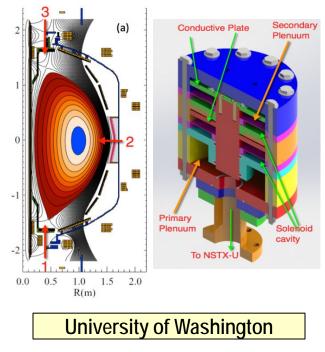
NBI-heated STs excellent testbed for α -particle physics


- α -particles couple to Alfvénic modes when $V_{\alpha} > V_{Alfvén} \sim \beta^{-0.5} C_{sound}$
- $V_{fast} > V_A$ condition easily satisfied in high- β ST with NBI heating

Can we find TAE-quiescent, high-performance regimes in NSTX-U?

NSTX-U aims to play leading role in disruption prediction, avoidance, and mitigation (DPAM) for ITER and FNSF

 Advanced non-linear MHD modelling of vertical displacement events (VDE) + halo currents with M3D-C¹


See Bhattacharjee and Sabbagh talks for more details

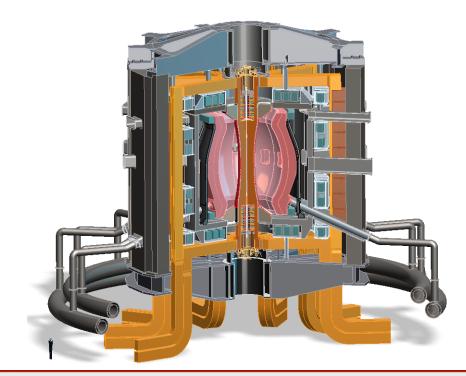
• Enhance measurements of halo-current dynamics

Planned NSTX-U Base Configuration

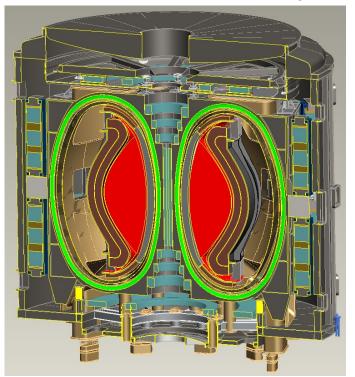
Normal Current Tiles Single Axis B Sensors

- Test ITER-like Massive Gas Injection (MGI) valves
 - Test poloidal dependence of density assimilation
 - First data expected FY16

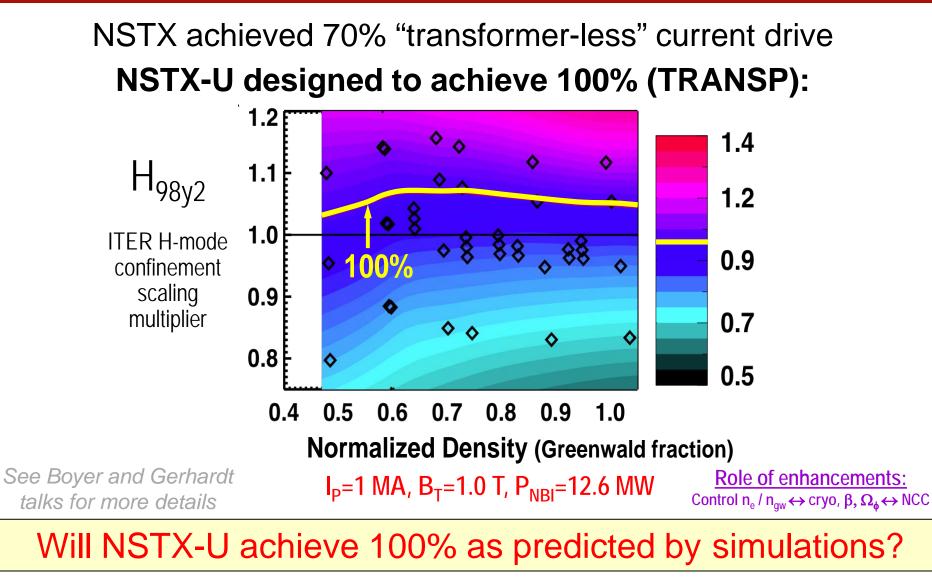
 $\frac{\text{Role of enhancements:}}{\text{Control }\nu^* \leftrightarrow \text{cryo}, \beta, \Omega_{\phi} \leftrightarrow \text{NCC}}$



NSTX-U Program Overview – PAC-37 – January 26-28, 2016

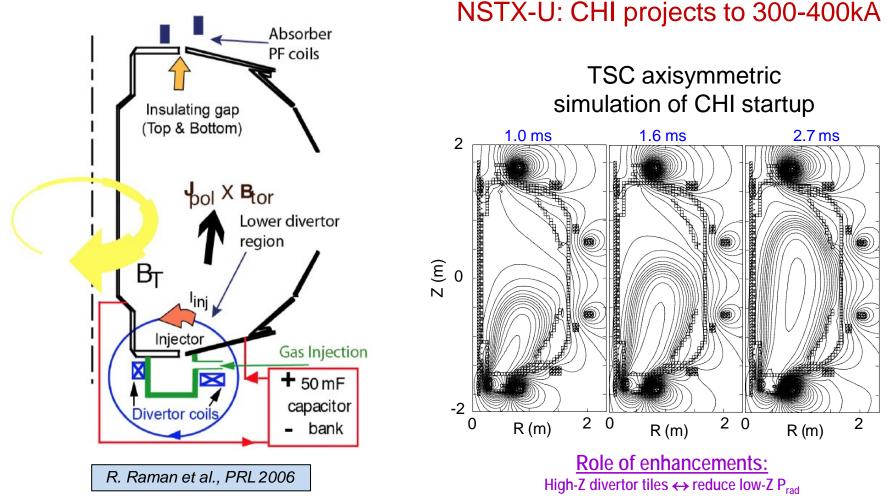

Design studies show ST potentially attractive as Fusion Nuclear Science Facility (FNSF) or Pilot Plant

FNSF: Provide neutron fluence for material/component R&D (+ T self-sufficiency?) **Pilot Plant**: Electrical self-sufficiency: $Q_{eng} = P_{elec} / P_{consumed} \ge 1$ (+ FNSF mission?)


FNSF with copper TF coils A=1.7, $R_0 = 1.7m$, $\kappa_x = 2.7$ Fluence = 6MWy/m², TBR ~ 1

FNSF / Pilot Plant with HTS TF coils A=2, $R_0 = 3m$, $\kappa_x = 2.5$ 6MWy/m², TBR ~ 1, $Q_{eng} \sim 1$

Steady-state operation required for ST/AT FNSF or Pilot Plant

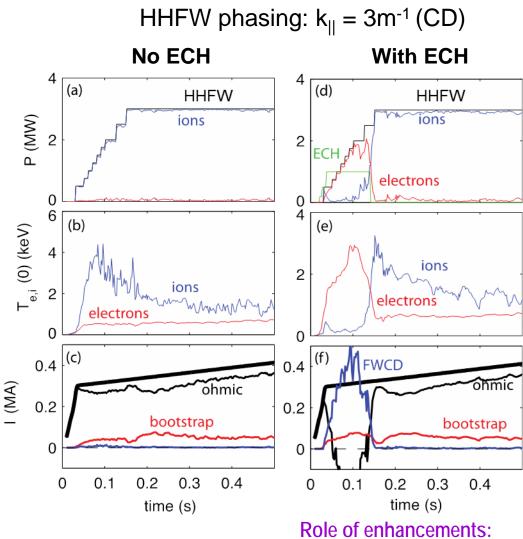

NSTX-U

NSTX-U Program Overview – PAC-37 – January 26-28, 2016

ST-FNSF may need solenoidless current start-up method Coaxial Helicity Injection (CHI) effective for current initiation

NSTX: 150-200kA closed flux current

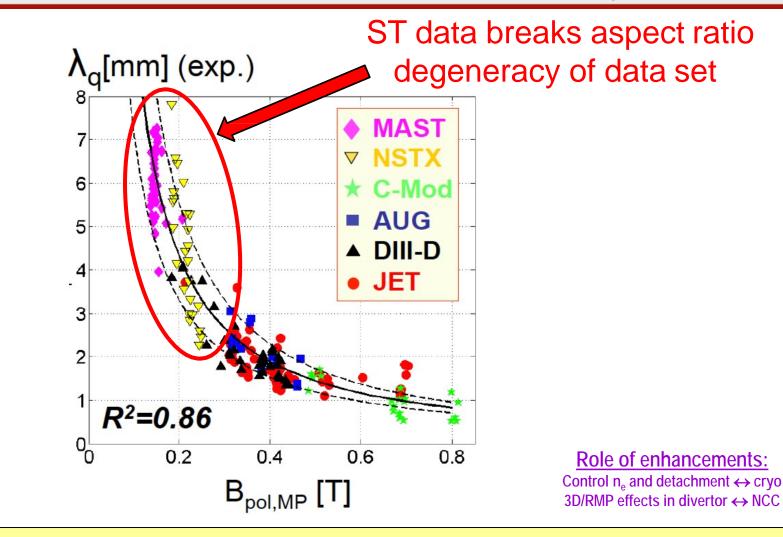
CHI developed on HIT, HIT-II Transferred to NSTX / NSTX-U


1MW 28GHz ECH / EBW gyrotron is game-changer for solenoid-free start-up

•CHI can form $I_P=300-400$ kA, but:

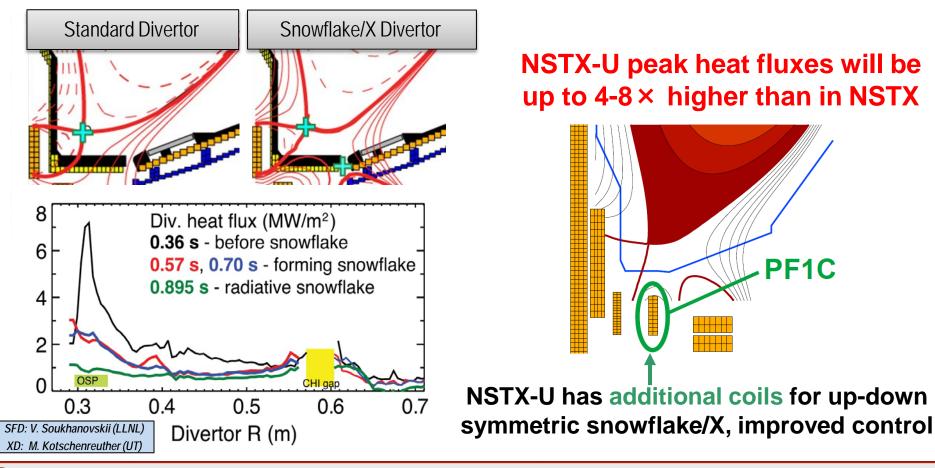
- T_e too low for HHFW absorption
- Density too low and I_P decay too fast for NBI absorption in CHI plasma
- Good ECH first pass absorption predicted \rightarrow "bridge the T_e gap"
- Strong ECH + High-Harmonic Fast-Wave (HHFW) synergy found in TRANSP simulations of non-inductive start-up

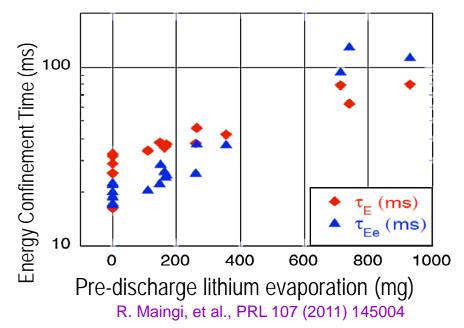
- Sustain I_{P} enough for NBI to couple (not shown)
- •EBW-only start-up also promising
 - High η_{CD} ~1 A/W in MAST, QUEST



See Poli and Gerhardt talks for more details

Gyrotron, also n_{o} control \leftrightarrow cryo


Dedicated tokamak + ST experiments found power exhaust width varies as 1 / B_{poloidal}


Will 1/B_{poloidal} variation continue at higher I_P? What about detached conditions?

NSTX-U will test ability of radiation and advanced divertors to mitigate very high heat-fluxes

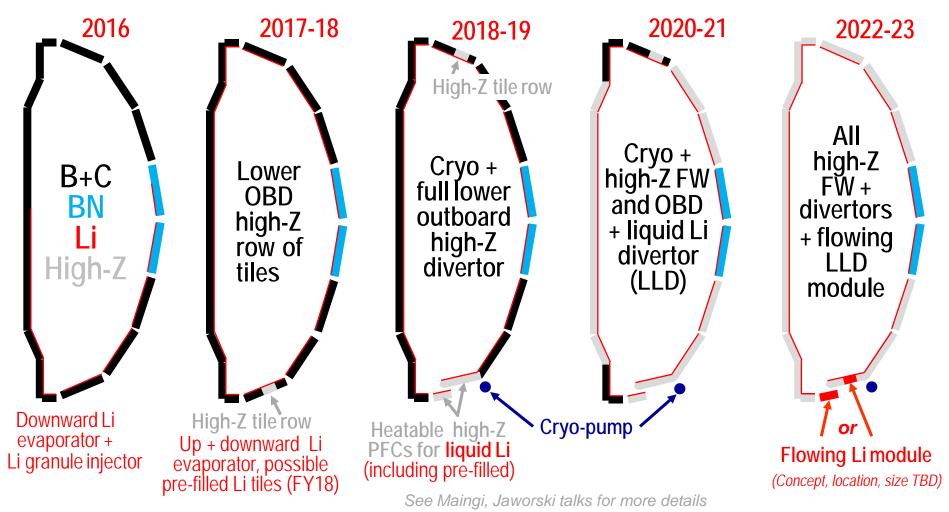
- NSTX: reduced heat flux 2-4 × via radiation (partial detachment)
- Additional null-point in divertor expands field, reduces heat flux

Plasma confinement increased continuously with increasing Li coatings in NSTX – what is limit?

Global parameters improve

 $-H_{98y2}$ increases ~0.9 \rightarrow 1.4

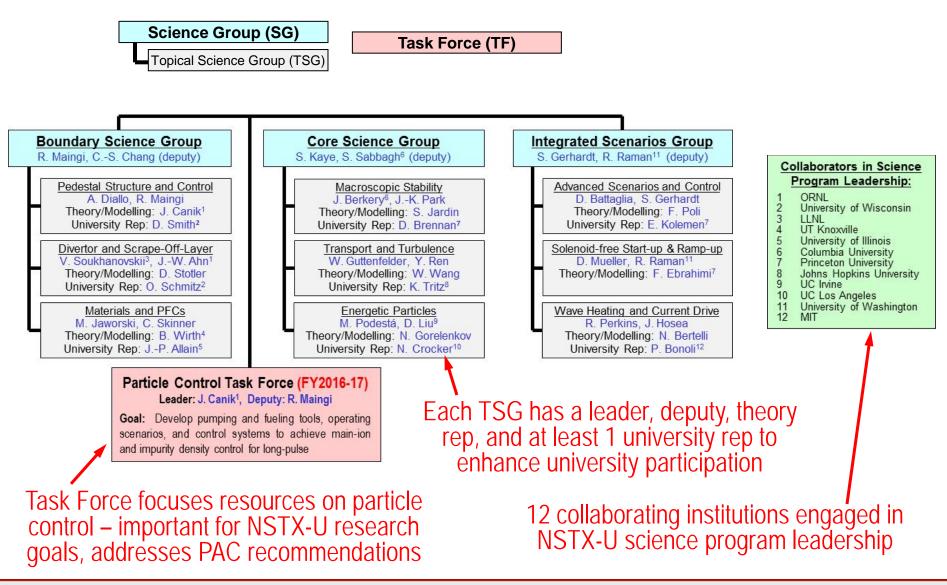
- No core Li accumulation
- High H critical for compact FNSF / Pilot Plants


NSTX-U will double Li-wall coverage with upward evaporators

- Will further assess contributors to confinement improvement:
 - –Lower-recycling / reduced neutral source / higher T_e
 - -Edge profile / turbulence changes
 - -Influence of (low-Z) impurities in pedestal region

Role of enhancements: Compare Li-wall pumping to conventional pumping ↔ cryo

NSTX-U boundary / PFC plan: add divertor cryo-pump, transition to high-Z wall, study flowing liquid metal PFCs


- 5yr goal: Integrate high τ_E and β_T with 100% non-inductive
- 10yr goal: Assess compatibility with high-Z & liquid lithium PFCs

Outline

- Events since PAC-35
- Charge Questions
- Mission and Capabilities of NSTX-U
- Research Goals and Milestones
- Key Scientific Issues NSTX-U Will Address
- Organizational Structure
- Run Coordination
- Support for FESAC / FES Strategic Goals
- Summary

New NSTX-U Science organizational structure for 2015-16: 3 Science Groups, 9 Topical Science Groups, 1 Task Force

Motivations for restructuring science program

- TSGs provide expertise in broad range of topics, but program would benefit from better coordination between TSGs
 - SG leader responsibility: Coordinate TSG physics research plans, experimental/shot plans, diagnostic coverage & usage
- Efficient shot usage especially important during first run year (many systems need to be re-commissioned)
 - Experiments that engage multiple TSGs receive more run-time
- Incorporate much wider set University researchers/PIs in planning + coordination of research program (FES/PPPL goal)
- New Task Force for long-pulse particle control
- New Working Groups: Disruption PAM (Sabbagh, Raman), NCC performance spec (Park, Canik), data frameworks (Tritz, Yuh, Smith)

⁻ Task Forces have dedicated run-time, Working Groups do not, but recommend Program/SG/TSG actions

NSTX-U university collaborators spearheaded new outreach seminar effort –11 talks given so far

National Spherical To	rus eXperimen	it Upgrade				Search this site			
Home Meetings Drag &	Drop Calendar	rs Phone Book S	Sitemap						J. Berkery (CU), D. Smith (UW)
NSTX-U Web Pages: Home Overview Mission Accomplishments	The following NS		rs are available to give seminars at γοι						
Collaboration Info Data Management Plan			r related topics as well. If you are inte on an e-mail link below.	rested, please conta	act the speake	r directly and CC			
Diagnostics Five Year Plans Group Links / Files / Email	Name	e-mail	Research interest / specialty	Pros	spective Talk	Title			
Joint Research Targets	Jack Berkery	jberkery@pppl.gov	Fusion plasma stability	"Resistive wall mod	de stability in N	NSTX"			
Milestones Operations	Walter Guttenfelder	wgutten@pppl.gov	Turbulence in magnetized fusion plasmas	"Understanding turb	bulence at 100) million degrees"			
Organization Outreach Seminars	Ahmed Diallo	adiallo@pppl.gov	H-mode pedestal, diagnostics	"Taming the plasma fusion performance		imum			
Program Project	Devon Battaglia	dbattagl@pppl.gov	Tokamak startup, H-mode physics, high-performance computing	"Physics operations development on N)			
Publications & Presentations Remote Connection Info	Jon Menard	jmenard@pppl.gov	Research program, next-step devices, MHD physics	"NSTX-U program of "Prospects for next					
Reports Research Forum - 2015 Roles and Responsibilities	David Smith	drsmith@pppl.gov	Plasma turbulence and instabilities, turbulence diagnostics	"Characterizing edg machine learning	ge instabilities	with			
Run Coordination Run Schedule Calendar Science Groups	Clayton Myers	<u>cmyers@pppl.gov</u>	Tokamak disruptions and error fields, laboratory astrophysics	"Two Challenges t Operation: Error F "Bringing the Cosi Astrophysical Pro	Date	Presentation L		Past NSTX-	U Outreach Seminars Title
Scientific Conferences Software	Rory Perkins	rperkins@pppl.gov	Radio frequency heating	"Fast wave power	1/17/2016	General Atomics		Mike Jaworski	NSTX-U upgrade plan for liquid-metal plasma-facing components
Surface Science Task Forces	Steven Sabbagh	sabbaqh@pppl.gov	Tokamak plasma stability and control for disruption prediction	field lines in NST) "Global Mode Stal in Tokamaks"		The College of N	lew Jersey		Bringing the Cosmos Down to Earth: Studying Astrophysical Processes in Laboratory Experiments
User Information Form Working Groups			and avoidance		10/30/2015	MIT / PSFC		Clayton Myers	Laboratory study of ideal MHD solar instability eruption mechanisms
NSTX Upgrade Overview NSTX Upgrade Project	Matt Reinke Keith	mreinke@pppl.gov kerickso@pppl.gov	Plasma diagnostics, impurities and exhaust Real-time Linux solutions	"Fusion Plasma E Measurements al "Real-time plasma	10/26/2015	University of Wa	shington	Jack Berkery	Progress and Plans for NSTX Upgrade and Kinetic Resistive Wall Mode Stability
	Erickson Roger Raman	rraman@pppl.gov	Coaxial helicity injection.	"Solenoid-free Pla	10/24/2015	APS Mid-Atlantic Morgantown, WV			Progress and plans for NSTX Upgrade and prospects for next-step spherical tori
	Deisch Meinei		non-inductive plasma formation	"The Report of C	9/16/2015				Brief overview of PPPL, fusion, and NSTX-U
the second	Rajesh Maingi	<u>rmaingi@pppl.gov</u>	Boundary physics, lithium program	"The Benefit of Co Fusion Research	9/14/2015	University of Wis	sconsin		Progress and plans for NSTX Upgrade and prospects for next-step spherical tori
_					9/4/2015	University of Roc	chester	Devon Battaglia	The Mission of NSTX-U Toward the Development of Fusion Energy
					9/3/2015	West Virginia Un	niversity		The Benefit of Coating the Plasma Facing Surfaces of Fusion Research Chambers with Low-Atomic-Number Materials in Keeping Plasma Hot, Confined, and Fusing
					5/8/2015	Columbia Univers	sity	Steve Sabbagh	Global MHD Mode Stabilization for Disruption Avoidance in Tokamaks
					4/20/2015	Cornell Universit	ý		The Benefit of Coating the Plasma Facing Surfaces of Fusion Research Chambers with Low-Atomic-Number Materials in Keeping Plasma Hot, Confined, and Fusing

Research Forum held February 2015 Experimental proposals prioritized using several criteria:

- Viability of proposal given available NSTX-U capabilities
- OFES Joint Research Targets / Milestones
- NSTX-U Research Milestones, Facility Enhancement design
- ITER: Direct IO requests, ITPA: NSTX-U is leader / prominent
- Experiments leading to high-profile publications/presentations: – PRL, Science, Nature Invited talks: IAEA, APS, EPS, Sherwood, ...
- Career development: PhD thesis, post-doctoral research
- Any good idea generated during run potential "break-thru" ?
- Maximize institutional / researcher breadth of XP leadership

Very strong interest in NSTX-U research Requested research time exceeds available time by factor of 4

Forum guidance / plan (Feb 2015): 16 run weeks Recently incremented to 18 run weeks = 90 total run days

re

Requested / Available Run Time: Total: $273 / 90 = -3 \times$ Research: $243 / 60 = -4 \times$

TSG / TF run-time guidance for FY16:

	Baseline # run weeks: Estimated total # run days: Estimated XMP run-days Reserve for multi-TSG XPs ontingency / director's reserve	5	Cross-cutting commissioning, shot development, calibrations				
Mir	I days for TSG/TFs to prioritize nimum # run days per TSG / TF ghting for FY16 and FY17 runs	55 3.2 0.8	0.2		iority #1 fraction 0.75	on	
	TSG / Task Force	FY 16 Milestones	FY17 Milestones	Nominal TSG / TF run days for all XPs	Nominal Priority 1 XP run time	Nominal Priority 2 Xi run time	
	Pedestal	R16-1		5.5	4	1.5	
Boundary	Divertor and SOL	R16-1	JRT-17, R17-1	6	4.5	1.5	
	Materials and PFCs		R17-2	4	3	1	
	Macroscopic Stability	JRT-16, R16-3		6.5	5	1.5	
Core	Transport & Turbulence	R16-1	R17-3	5.5	4	1.5	
	Energetic Particles	R16-2		5.5	4	1.5	
	Advanced Scenarios and Control	Notable, JRT-16, R16-2,3	JRT-17, R17-4	8.5	6.5	2	
Scenarios	Solenoid-Free Start-up		R17-4	4	3	1	
	Wave Heating and Current Drive		IR17-1	4	3	1	
Task Forces	Particle Control	R16-3		5.5	4	1.5	

84 unique lead author names

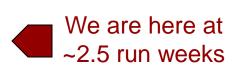
	#	Institution	Run Days Requested	Fraction
	1	Princeton Plasma Physics Laboratory	112.1	41.1%
	2	Oak Ridge National Laboratory	28.5	10.5%
050/	3	Princeton University	20.5	7.5%
-85% of	4	Lawrence Livermore National Laboratory	18	6.6%
quested	5	General Atomics	17	6.2%
	6	ITER (France)	12	4.4%
time	7	University of Washington	11.5	4.2%
	8	Columbia University	10.5	3.9%
	9	University of Wisconsin	9	3.3%
	10	University of California - Irvine	7.5	2.8%
	11	Nova Photonics	6	2.2%
	12	University of Illinois	4	1.5%
	13	Massachusetts Institute of Technology	4	1.5%
	14	University of California - San Diego	3	1.1%
	15	Johns Hopkins University	3	1.1%
	16	University of Tennessee	2	0.7%
	17	Lehigh University	1	0.4%
	18	Florida International University	1	0.4%
	19	University of California - Los Angeles	1	0.4%
	20	University of York (United Kingdom)	1	0.4%
			272.6	100%

NSTX-U

NSTX-U Program Overview – PAC-37 – January 26-28, 2016

Experimental proposal preparation and execution well underway

- 29 eXperimental Machine Proposals (XMP) for commissioning / calibration identified and/or written
 - 11 of the 29 already being executed (see Battaglia listing)
 - Expect ~5-6 run weeks of XMP
- 27 eXperimental Proposals (XPs) written, reviewed for highest priority (P1a) experiments ~6 run weeks


~1/2-2/3 of FY16 run-time has XMP/XP ready

- Additional allocations:
 - High priority experiments P1b,c ~3.5-4 run weeks
 - Priority P2a,b ~ 1.5-2 run weeks
 - Reserve ~1 run week
- For more info see: Master Spreadsheet of XMPs and XPs

Research Operations Goals for first 2 run-months (still consistent with Forum guidance / assumptions)

- Machine Commissioning ~1 month (run weeks 1-4)
 - Develop basic breakdown, current ramp, shape/position control, diverted plasmas, H-mode access, basic fuelling optimizations.
 - Diagnostic commissioning
 - Boronized PFCs
 - Mostly XMPs
 - Goal: 1 MA, 0.5 T, NBI-heated H-mode (i.e. ~NSTX fiducial levels)
- 1st Month of Science Campaign (run weeks 5-8)
 - Boronized PFCs, possibly begin Li coatings (end of period)
 - Operations and basic profile diagnostics, neutron rate,...
 - HHFW available for commissioning
 - 6 beam sources up to 90 kV
 - Operation up to 1.4 MA and 0.65 T, 2 seconds

M. Ono talk will cover operational readiness

Outline

- Events since PAC-35
- Charge Questions
- Mission and Capabilities of NSTX-U
- Research Goals and Milestones
- Key Scientific Issues NSTX-U Will Address
- Organizational Structure
- Run Coordination
- Support for FESAC / FES Strategic Goals
- Summary

Substantial leadership and participation in FES workshops by NSTX-U, collaborators, PPPL

- Transients: 36% of 67 whitepapers: 13 for disruptions, 11 for ELMs
 - Co-chair: R. Nazikian
 - Disruptions: D. Brennan (co-lead), S. Sabbagh, D. Gates
 - ELMs: R. Nazikian (lead), J. Canik (co-lead), O. Schmitz, W. Solomon
- PMI: 29% of 56 whitepapers evenly split among topical areas
 - − Chair: R. Maingi ← hosted by PPPL
 - SOL / Div: R. Goldston, J. Myra, V. Soukhanovskii
 - PMI / Div. Simulators: J.P. Allain (leader), M. Jaworski, B. Wirth
 - Engineering Innovation: C. Kessel (leader), R. Ellis, R. Majeski
 - Core-edge Integration: J. Canik, M. Kotschenreuther, R. Majeski, R. Wilson
 - Cross-cutting: R. Maingi, J. Menard, H. Neilson
- Integrated Modeling: 24% of 119 whitepapers Disruptions, WDM
 - Disruptions: D. Brennan (co-lead), S. Gerhardt, S. Jardin
 - Boundary: J. Canik, C-S Chang, G. Hammett
 - Whole Device Modelling: C. Kessel (co-lead), B. Grierson, S. Kaye, F. Poli
 - Multi-Physics, multi-scale: G. Fu, G. Hammett
 - Data Management / Software Integration: S. Kaye / F. Poli

NSTX-U research program well aligned with FESAC / FES strategic priorities

- Advancing predictive capability, model validation
 See NSTX-U / Theory Partnership and Science Group talks
- Supporting integrated modeling, exascale computing - See TRANSP + Integrated Scenarios talks, XGC applications
- Mitigating / avoiding transients (disruptions, ELMs)
 See Boundary and Core Science Group talks, DPAM talk
- Taming the PMI (Divertor, SOL, first wall, PFCs)
 - See Boundary Science and high-Z / liquid metal plan talk
- Establishing physics basis for FNSF / next-steps
 - Contributions from all talks
- Supporting discovery science, basic plasma physics
 - Reconnection / plasmoids in Partnership, Integrated Scenarios talks

Summary: NSTX-U will make fundamental and world-leading contributions to toroidal fusion science

- Investigate unique high-β, low collisionality regime for understanding transport and stability
- Explore advanced divertors, high-Z and Li walls
- Inform optimal configuration for next-steps
- FY2016 run campaign is now underway!

Thank you for your attention!

Run Time Guidance for XP Prioritization (January 2016) Similar to Research Forum, but +1 week for XMP, +1 week for XP

Baseline # run weeks: Estimated total # run days: Estimated XMP run-days Reserve for multi-TSG XPs Contingency / director's reserve Nominal total days for TSG/TFs to prioritize Minimum # run days per TSG / TF Milestone weighting for FY16 and FY17 runs		30 10 5 55 3.2	Cross-cutting com	missioning,	, shot devel	opment, calibratic	ns			Pr	iority #1 fracti 0.75	on
	TSG / Task Force	FY 16 Milestones	FY17 Milestones	FY16 count	FY17 count	Milestone additional runtime	Forum Idea Count Increment	Nominal TSG / TF run days for single TSG XPs	TF run days	TSG / TF run	Nominal Priority 1 XP run time	Nominal Priority 2 XP run time
	Pedestal	R16-1		1	0	0.8	0.5	4.5	1	5.5	4	1.5
Boundary	Divertor and SOL	R16-1	JRT-17, R17-1	1	2	1.2	1	5	1	6	4.5	1.5
	Materials and PFCs		R17-2		1	0.2	0	3	1	4	3	1
	Macroscopic Stability	JRT-16, R16-3		2	0	1.6	1	5.5	1	6.5	5	1.5
Core	Transport & Turbulence	R16-1	R17-3	1	1	1	0.5	4.5	1	5.5	4	1.5
	Energetic Particles	R16-2		1	0	0.8	0.5	4.5	1	5.5	4	1.5
	Advanced Scenarios and Control	Notable, JRT-16, R16-2,3	JRT-17, R17-4	4	2	3.6	1	7.5	1	8.5	6.5	2
Scenarios	Solenoid-Free Start-up		R17-4	0	1	0.2	0	3	1	4	3	1
	Wave Heating and Current Drive		IR17-1	0	1	0.2	0	3	1	4	3	1
Task Forces	Particle Control	R16-3		1	0	0.8	0.5	4.5	1	5.5	4	1.5

45 10

55

41

Total:

14

NSTX-U 5 year plan: Develop physics/scenario understanding needed to assess ST viability as FNSF/DEMO, support ITER

	2016	2017 201	8	2019	2020	2021	
Max B _T [T], I _P [MA]	0.8, 1.6	1, 2					
Structural force and coil heating limit fractions	0.5, 0.5	1.0, 0.75 1.0	, 1.0				
Nominal τ_{pulse} [s]	1 – 2	2 – 4	4 – 5				
Sustained β_N	3 – 5	4 – 6	NCC	5 – 6			
$ u^{\star}$ / $ u^{\star}$ (NSTX)	0.6	0.4	Cryo	0.3 – 0.2	0.2 – 0.1		
Non-inductive fraction ($\Delta t \ge \tau_{CR}$)	70 – 90%	80 – 110%		90 – 120%	100 – 1409		orm choice \NSF/DEMO \
NBI+BS I _P ramp-up: initial → final [MA]		0.6 → 0.8	ECH/	0.5 → 0.9	0.4 → 1.0		pect ratio
CHI closed-flux current [MA]	0.15 – 0.2	0.2 – 0.3	EBW	0.3 – 0.5	0.4 – 0.6	, and	d divertor /
P _{heat} [MW] with							
q _{peak} < 10MW/m ²	8	10		15 Diverter b	20	tral	
Snowflake and radiative divertor exhaust location	Lower	Lower or Upper	· Lo	ower + Upper	eat-flux cont		

Cryo: access lowest v*, compare to Li **ECH / EBW**: bridge T_e gap from start-up to ramp-up Off-midplane non-axisymmetric control coils (NCC): rotation profile control (NTV), sustain high β_N

NSTX-U engaged in 31 ITPA joint experiments / activities

	Advanced Scenarios and Control						
IOS-1.2	Divertor heat flux reduction in ITER baseline scenario (considering)						
IOS-1.3	Operation near P _{1H} (considering)						
IOS-2.1	Compare helium H-modes in different devices (considering)						
IOS-3.3	Core confinement for $q(0)=2$ (considering)						
IOS-5.2	Maintaining ICRH coupling in expected ITER regime						
	Boundary Physics						
PEP-26	Critical edge parameters for achieving L-H transition						
PEP-28	Physics of H-mode access with different X-point height (considering)						
PEP-29	Vertical jolts/kicks for ELM triggering and control						
PEP-30	ELM control by pellet pacing in ITER-like conditions and consequences for plasma confinement						
PEP-31	Pedestal structure and edge relaxation mechanisms in I-mode (considering)						
PEP-37	Effect of low-Z impurity on pedestal and global confinement						
DSOL-31	Leading edge power loading and monoblock shaping						
DSOL-34	Far-SOL fluxes and link to detachment (considering)						
DSOL-35	In-out divertor ELM energy density asymmetries (consdiering)						
	Macroscopic Stability						
MDC-1	Disruption mitigation by massive gas jets						
MDC-8	Current drive prevention/stabilization of NTMs (considering)						
MDC-15	Disruption database development						
MDC-17	Active disruption avoidance						
MDC-18	Evaluation of axisymmetric control aspects						
MDC-19	Error field control at low plasma rotation						
MDC-21	Global mode stabilization physics and control						
MDC-22	Disruption prediction for ITER						
	Transport and Turbulence						
TC-9	Scaling of intrinsic plasma rotation with no external momentum input (considering)						
TC-10	Experimental identification of ITG, TEM and ETG turbulence and comparison with codes						
TC-11	He and impurity profiles and transport coefficients						
TC-14	RF rotation drive (considering)						
TC-15	Dependence of momentum and particle pinch on collisionality						
TC-17	ρ^* scaling of intrinsic torque (considering)						
TC-19	Characteristics of I-mode plasmas (considering)						
TC-24	Impact of resonant magnetic perturbations on transport and confinement (considering)						
	Energetic Particles						
EP-6	Fast ion losses and associated heat loads from edge perturbations (ELMs and RMPs)						

Roles / Responsibilities for Task Forces

Long-pulse particle control

- Address specific operational and/or scientific goal that cuts across or impacts multiple SGs / TSGs
- Goal must be very high priority within research program
- Receives dedicated run-time, and has dedicated session at Research Forum
 - Similar to a TSG, but may not necessarily have theory/modelling or university representatives – depends on duration or scope
- Organizes experimental proposals to achieve goal
- Finite duration nominally 1-2 years, renewable if necessary
- TF leadership should nominally have a leader and a deputy, and should include at least 1 collaborator if possible
- Reports directly to Program / Project

Roles / Responsibilities for Working Groups

DPAM: Prep for JRT-16, understand then avoid causes of disruptions in NSTX-U

- Respond to specific programmatic or technical charge from NSTX-U Program or Project
- Addresses issues that cross-cut more than one SG or TSG
- Nominal lifetime = 1-2 years, can be extended/renewed
- Provides points of contact between NSTX-U and other groups as necessary (e.g. PPPL theory, FESAC, ITPA, ITER)

Multi-facility and multi-institutional effort

- Does not have dedicated NSTX-U run time, but provides recommendations on XP prioritization, other resource needs
- WG leadership should nominally have a leader and a deputy, and should include at least 1 collaborator if possible

NSTX-U = National Spherical Torus eXperiment - Upgrade Highly collaborative research program

Domestic (33)

College of William and Mary **Columbia University** CompX Florida International Univ. General Atomics Idaho National Laboratory Johns Hopkins University Lawrence Livermore Nat. Lab. Lehigh University Lodestar Research Corporation Los Alamos National Laboratory Massachusetts Institute of Tech. Nova Photonics. Inc **Oak Ridge National Laboratory Old Dominion University Princeton Plasma Physics Lab Princeton University Purdue University** Sandia National Laboratory **Tech-X Corporation** U. of California - Davis U. of California - Irvine U. of California - Los Angeles U. of California - San Diego U. of California - Space Sci. Lab. University of Colorado University of Illinois University of Maryland University of Rochester University of Tennessee University of Texas University of Washington University of Wisconsin

402 team members 290 scientists (~70% non-PPPL)

55 institutions 22 US Universities

International (22)

ASIPP CCFE FOM Institute DIFFER **Hiroshima University** Inst. for Nuclear Research **IPP-Czech Republic** Ioffe Physical-Tech. Inst. JAEA KAIST **Kyoto University Kyushu University** NFRI NIFS **Niigata University Seoul National University Tokamak Energy, LTD** TRINITI UNIST **University of Costa Rica** University of Hyogo **University of Tokyo University of York**

