

Plasma control algorithm development on NSTX-U using TRANSP

Dan Boyer

for the Integrated Scenarios science group

NSTX-U Program Advisory Committee Meeting (PAC-37) January 26, 2016

NSTX-U Mission Elements 5 Highest Research Priorities

- Explore unique ST parameter regimes to advance predictive capability for ITER and beyond
 - 1. Understand confinement and stability at high beta and low collisionality
 - 2. Study energetic particle physics prototypical of burning plasmas
- Develop solutions for PMI challenge
 3.Dissipate high edge heat loads using expanded magnetic fields + radiation
 4.Compare performance of solid vs. liquid metal plasma facing components
- Advance ST as possible FNSF / Pilot Plant

5.Form and sustain plasma current without transformer for steady-state ST

TRANSP routinely used in interpretive mode, increasingly in predictive mode

High-fidelity control simulations needed for model-based control design and validation

 Control design typically relies on reduced modeling to make the design problem easier

- When tested experimentally, the nonlinearities and coupling of the actual system may degrade performance
 - Dedicated experimental time needed for commissioning
- Testing controllers using the integrated modeling code TRANSP prior to implementation may:
 - Improve controller performance and reduce time for commissioning and fine tuning
 - Enable demonstration of new control techniques to justify implementation and experimental time

NSTX-U TRANSP feedback control simulations based on scenario development

Now using TRANSP as a virtual tokamak for control design

Now using TRANSP as a virtual tokamak for control design

PAC-37, Plasma control algorithm development on NSTX-U using TRANSP, M.D. Boyer, 1/26/2016

NSTX-U

Now using TRANSP as a virtual tokamak for control design

NSTX-U

Ability to change actuators in `TRANSP real-time', i.e., based on feedback control

Ability to change actuators in `TRANSP real-time', i.e., based on feedback control

NSTX-U

Ability to change actuators in `TRANSP real-time', i.e., based on feedback control

- Stored energy and q₀ control on NSTX-U – M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q₀, and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER
 - F. Poli, PPPL

- Stored energy and q₀ control on NSTX-U – M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q₀, and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER – F. Poli, PPPL

- Stored energy and q₀ control on NSTX-U – M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q₀, and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER – F. Poli, PPPL

Using TRANSP to test q_0 and β_N control via beam power and outer gap size actuation

- Boundary can have strong effect on q profile through
 - Effect on beam
 deposition profile
 - Effect on bootstrap current through change in elongation
- Two reference boundaries with different outer gap sizes were chosen, and interpolated between based on the feedback controller request

M.D. Boyer, NF 2015

State-space system identification used for designing simultaneous q_0 and β_N controller

- Open loop signals applied to each actuator in several TRANSP runs
- Linear dynamic model optimized to predict outputs

Optimal controller achieves good target tracking in TRANSP simulations

NSTX-U

PAC-37, Plasma control algorithm development on NSTX-U using TRANSP, M.D. Boyer, 1/26/2016

- Stored energy and q₀ control on NSTX-U
 M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q₀, and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER – F. Poli, PPPL

β_N and q_0 control with beam line 1 and outer gap improves response and tracks targets

control gains)

3.0

0.5

NSTX-U

1.0

1.5

Time [s]

2.0

2.5

- Stored energy and q₀ control on NSTX-U – M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q_0 , and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER – F. Poli, PPPL

Simplified model used for rotation profile control design in NSTX-U [I. Goumiri]

Using simplified form of toroidal momentum equation for design, profiles derived from TRANSP

$$\sum_{i} n_{i} m_{i} \langle R^{2} \rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho}\right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \langle R^{2} (\nabla \rho)^{2} \rangle \frac{\partial \omega}{\partial \rho}\right] + T_{NBI} + T_{NTV}$$

Simplified model used for rotation profile control design in NSTX-U [I. Goumiri]

Using simplified form of toroidal momentum equation for design, profiles derived from TRANSP

NSTX-U

Simplified model used for rotation profile control design in NSTX-U [I. Goumiri]

Using simplified form of toroidal momentum equation for design, profiles derived from TRANSP

State-space controller achieves good tracking in TRANSP simulations [I. Goumiri]

NSTX-U

PAC-37, Plasma control algorithm development on NSTX-U using TRANSP, M.D. Boyer, 1/26/2016

- Stored energy and q₀ control on NSTX-U
 M. D. Boyer, PPPL, Experiment: XP-1509
- Stored energy, q₀, and I_p control on NSTX-U (non-inductive scenarios)
 - M. D. Boyer, PPPL, Experiment: future XP, possibly XP-1507
- Rotation profile control on NSTX-U – I. Goumiri, Princeton U., Experiment: XP-1564
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U., Experiment: part of XP-1532
- Rotation profile control on DIII-D – W. Wehner, Lehigh U.
- Shape control on NSTX-U – M. D. Boyer, PPPL
- NTM control on ITER – F. Poli, PPPL

Simplified current profile model used for feedback and feedforward control design

- Magnetic diffusion equation
 - Similar form to momentum diffusion equation
 - Enables similar modeling approach

$$\frac{\partial \psi}{\partial t} = \frac{\eta(T_e)}{\mu_0 \rho_b^2 \hat{F}^2} \frac{1}{\hat{\rho}} \frac{\partial}{\partial \hat{\rho}} \left(\hat{\rho} \boldsymbol{D}_{\psi} \frac{\partial \psi}{\partial \hat{\rho}} \right) + R_0 \hat{H} \eta(T_e) \frac{\langle \bar{j}_{NI} \cdot \bar{B} \rangle}{B_{\phi,0}},$$

- Multiple actuators considered:
 - Loop voltage
 - Individual beam heating
 - Density
- Feedback controller for tracking and disturbance rejection designed and tested in TRANSP
- Feedforward control optimization based on reduced model

Z. Ilhan, W. Wehner, E. Schuster

Feedforward actuator trajectory optimization to match target q profile

PAC-37, Plasma control algorithm development on NSTX-U using TRANSP, M.D. Boyer, 1/26/2016

Summary and future work

- Complexity of the control requirements for NSTX-U motivates use of model-based control
- A TRANSP framework for testing feedback controllers prior to experiments has been developed:
 - Generate and test control-oriented models
 - Test/tune feedback control algorithms
 - Test new algorithms, demonstrate new control approaches

• Future work

- Test on NSTX-U!

Backup Slides

Feedback control of NSTX-U is a complex task but model-based design can help

 By incorporating dynamic models in the design process, control algorithms can be made to handle all of these issues

NSTX-U

Modifications have been implemented using external code: the Expert file

- Expert subroutine called at many places throughout TRANSP production code
- An identifier is passed along with the call
 - different snippets of code can be run at different points during the simulation
- Custom run-specific code can be run at each call to manipulate certain variables (which would typically be input ahead of time) based on the state of the simulation

Profiles and coil currents during optimal controller simulation

Reference simulation w/ fixed OH current: slow response, sensitivity to disturbances

– Can feedback recover performance?

β_N and q_0 feedback using beam line 1 and outer gap control during confinement pert.

- Beam line 1 power increased
 to track reference β_N
- Increasing beam power and β_N leads to increased current
 - Reference current nearly recovered despite no feedback control on current
- Outer gap adjusted to maintain q₀

NSTX-U

PAC-37, Plasma control algorithm development on NSTX-U using TRANSP, M.D. Boyer, 1/26/2016

Feedforward actuatory trajectory optimization

- **Objective:** Design the actuator trajectories that can steer the plasma to a target state characterized by the safety factor profile $q^{tar}(\hat{\rho}, t_f)$ or rotational transform profile $\iota^{tar}(\hat{\rho}, t_f)$ at a specified time t_f during the discharge such that the achieved plasma state is as stationary in time as possible.
- Cost functional defined as:

$$J(t_f) = k_q J_q(t_f) + k_{ss} J_{ss}(t_f)$$

where k_{ss} and k_q are the weight factors representing the relative importance of the plasma state characteristics and

$$J_{q}(t_{f}) = \int_{0}^{1} W_{q}(\hat{\rho}) \left[q^{tar}(\hat{\rho}) - q(\hat{\rho}, t_{f})\right]^{2} d\hat{\rho}$$
(7)

$$J_{ss}(t_f) = \int_0^1 W_{ss}(\hat{\rho}) \left[g_{ss}(\hat{\rho}, t_f) \right]^2 d\hat{\rho},$$
 (8)

where $W_q(\hat{\rho})$ and $W_{ss}(\hat{\rho})$ are positive weight functions and

$$g_{ss}(\hat{\rho},t) = \frac{\partial U_p}{\partial \hat{\rho}} = -\frac{\partial \Psi}{\partial t} = -2\pi \frac{\partial \psi}{\partial t},$$
(9)

where U_p is the loop-voltage profile which can be related to the temporal derivative of the poloidal magnetic flux.

NSTX-U