

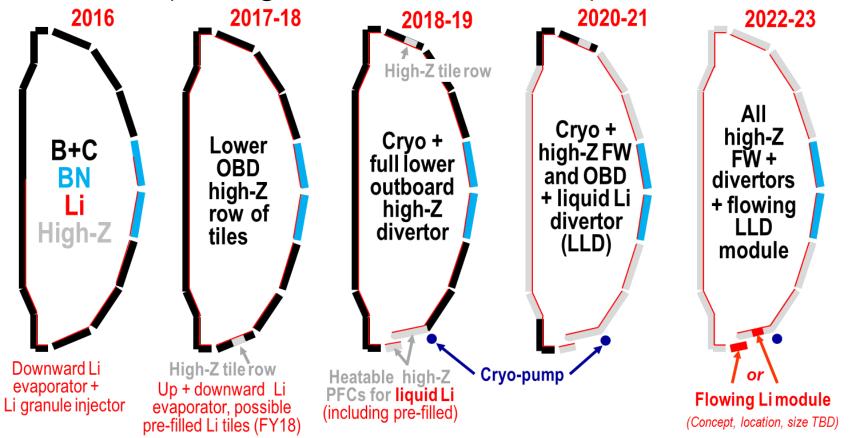
Overview of NSTX-U plans for high-Z and liquid lithium plasma-facing components

MA Jaworski¹, M.L. Reinke², V. Soukhanovskii³, A. Brooks¹, R. Kaita¹, R. Maingi¹, J. Menard¹, M. Ono¹, C. Skinner¹, K. Tresemer¹, and the NSTX-U Team

¹Princeton Plasma Physics Laboratory ²Oak Ridge National Laboratory ³Lawrence Livermore National Laboratory

37th NSTX-U Program Advisory Committee Meeting Princeton Plasma Physics Laboratory 26-28th, January 2016

Outline


- Why must NSTX-U change its PFCs?
- How will the PFC modification be conducted while maintaining scientific productivity?
- Are we technically ready to move toward liquid lithium PFCs?
- Are we prepared to address the scientific challenges associated with the PFC changes?
- What strategies are being developed to mitigate risk?

Viability of lithium as a plasma-facing material cannot be assessed with graphite PFCs

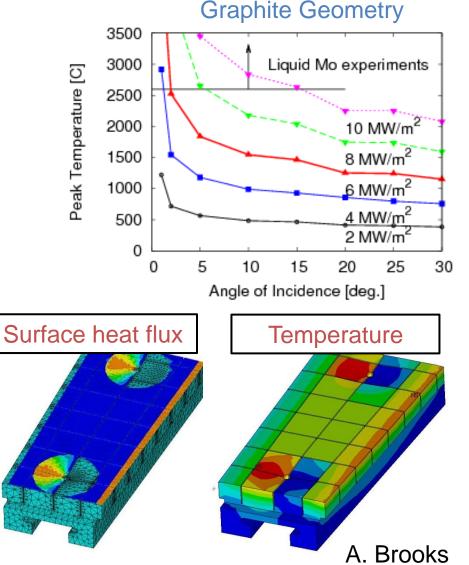
- Serious attention to potential weaknesses of Li approach demands serious answers on whether liquid Li will deliver on promises
- Studies in NSTX and LTX have revealed complex chemistry in general as well as substrate dependence (i.e. C vs. metal)
- Evaporated films on graphite are not reactor relevant
- Importance of integrated scenarios *including the wall materials* recently demonstrated (i.e. JET-ILW)

Staged conversion mitigates risk and enables comparative assessment of both high-Z and liquid Li

- Open divertor and flexible magnetic configuration enables multiple studies and material selection
- Single-variable experiment in single campaign enabled by conversion (i.e. high-Z vs. lithium PFCs)

NSTX-U

High-Z tile row will provide design and engineering assessments


- Replace continuous row of graphite tiles with high-Z
 - Avoid Li substrate diffusion for longer-pulse experiments
 - Examine protection of high-Z substrate w/ low-Z coatings
- Provide operational experience and validate engineering design and analysis with an eye to future deployments of metallic PFCs
- Continue experiments on evaporated Li films on high-Z substrate in diverted configuration

Rapid experiments facilitated by direct replacement of graphite tiles

- Machine installation time minimized with 1-for-1 replacement
- TZM-alloy provides high-Z, Li-compatible substrate and machinability
- Surface castellations relieve thermo-mechanical stresses
 - Separate peak stress from peak temperature
 - Several design iterations to optimize for NSTX-U tile shape

High-Z design will enable broad temperature range and power handling capabilities for experiments

- Engineering design improves over graphite
- Geometric envelope lead to optimized, but stress-limited design -> good engineering tests
- Nominal heat-flux impact factor of 10 MJ/(m² s^{1/2}) capabilities
 - Leading edges mitigated with chamfering
 - Requires careful alignment

NSTX-U

Two options leading for low-heat flux PFCs

- Previous machines utilized coated graphite (e.g. AUG)
- LTX studies show improvement with very-low water partial pressures (~10⁻¹⁰ Torr)
- Coated graphite may retain H₂O reservoir while a high-Z coated metal will not
 - LLD-like construction feasible with copper base tile with bonded steel and high-Z coating
 - Alternative base metals (e.g. stainless steel) with coating or bulk high-Z also options

Near-term program milestones are emphasizing high-Z tile capability

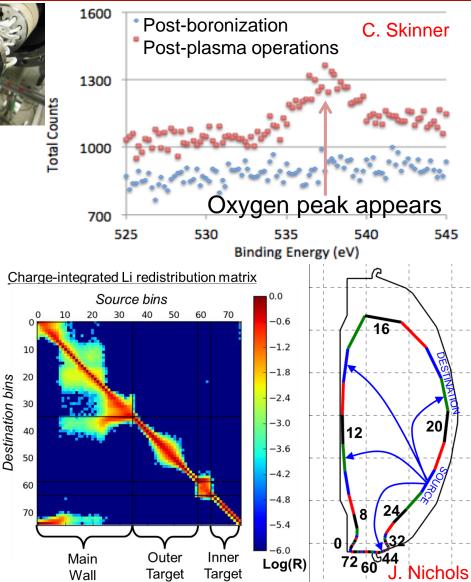
- R(17-2): Assess high-Z divertor PFC performance and impact on operating scenarios
 - Operations, heat-flux mitigation, erosion, migration and impact on core performance to be assessed
 - XP time dedicated in FY16 (XP1526) to establish baseline performance with boronized and lithiated graphite
- IR(18-1) (incremental): Investigation of power and momentum balance for high-density and impurity fraction divertor operation
 - Establishes baseline assessment of dissipative divertor operation in the NSTX-U
 - Critical for establishing vapor-shielding identification and physics studies

Multi-institution effort underway to deploy diagnostics and modeling

 Plasma-material interaction science, material migration and surface science studies

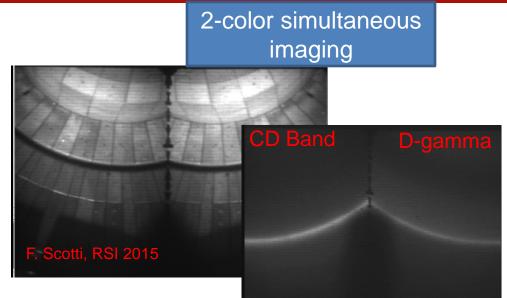
• Divertor and edge transport studies

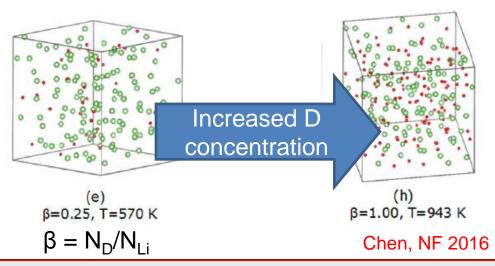
Core transport studies



High-Z progression highlights mixedmaterial PMI and coordinated lab studies

 Material Analysis and Particle Probe enables compositional analysis




- Measurements of C, Li, Mo, B, O via XPS
- D retention via TPD
- Material migration modeling with WallDYN
 - PPPL PhD thesis, collaboration with IPP-MPG & PU
 - QCM and witness plate measurements in vacuum vess.
 - Mixed-material erosion model development with surf. sci. lab

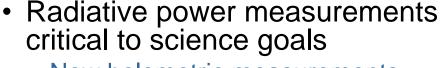
High-Z, mixed-material erosion examined in experiment and with quantum modeling

- Extensive diagnosis of PFCs via plasma
 - Multiple imaging systems, spectrometers
 - Langmuir probes
 - Infrared thermography
- Atomic scale quantum modeling of lithium mixedmaterial (Li+D on TZM)
 - Examined LiD "rock-salt" formation in liquid lithium
 - Results coupled into analysis of Magnum-PSI experiment on TZM(Abrams, NF 2016)

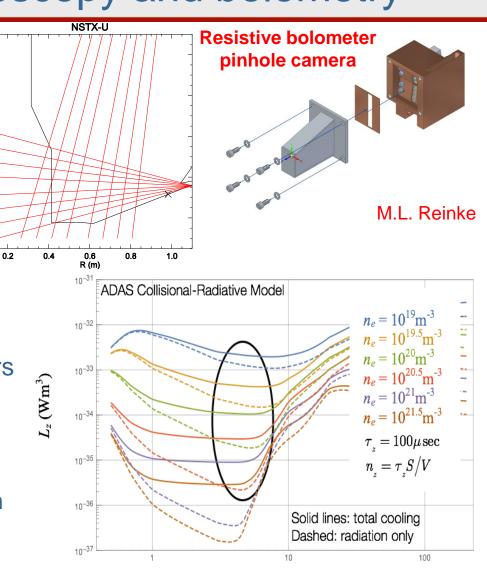
NSTX-U

Impact of low-Z and high-Z operations on divertor assessed via spectroscopy and bolometry

-0.8


-1.0

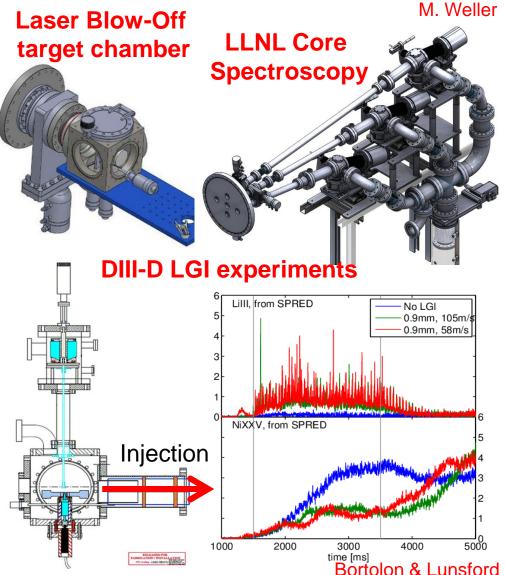
Ê -1.2 N


-1.4

-1.6

- Near-surface prompt redeposition modifies effective material yield into plasma
 - Auburn U. group providing ADAS simulation & support
 - LLNL measurement via 2-color intensified imaging

- New bolometric measurements via video and resistive foil bolometers (ORNL+PPPL+DIFFER+NIFS)
- Visible imaging and spectroscopy provide species identification and localization
- Comparison with numerous codes in NSTX-U Team (UEDGE, SOLPS, OEDGE) and ADAS coll-rad models

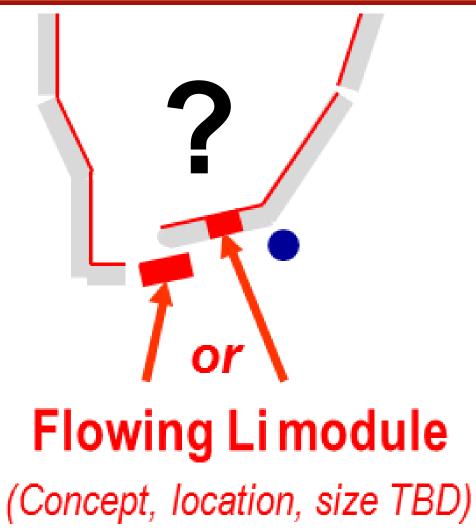


 $T_e(eV)$

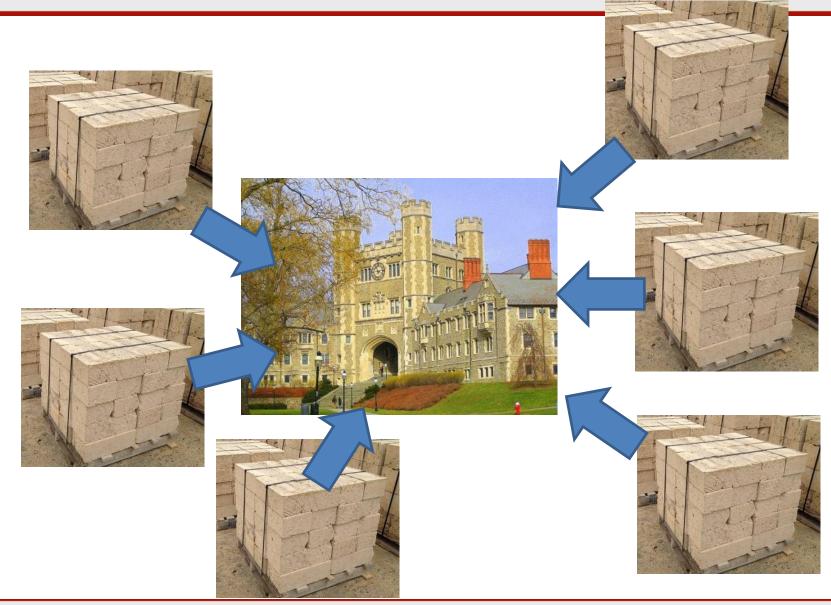
Schwartz, Goldston

Core transport toolset of diagnostics and actuators in development

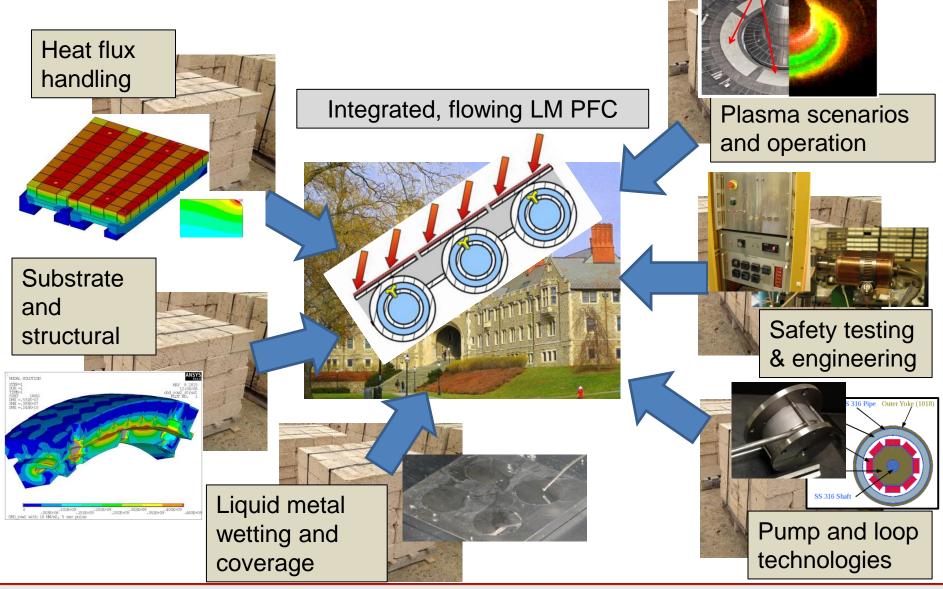
- VUV/SXR spectroscopy to track core high-Z contamination
 - MONA-LISA, XEUS, LoWEUS (demonstrated w/ Mo in C-Mod)
 - X-ray crystal spectrometer(future)
- New full-midplane core resistive bolometer system
- Actuators enable physics and control experiments
 - Investigate neoclassical + turbulent + MHD driven transport in low-A device
 - LBO and high-Z noble gas injection provide controlled sources
 - Core/edge control from ELMs (LGI, 3D fields) and on-axis RF



Preparation for all high-Z PFC operation will enable future liquid Li comparison experiments


- Numerous examples from world program demonstrate importance of scenario impact with high-Z PFCs
 - Constrained operating windows
 - Modified performance (e.g. confinement)
- Power exhaust solutions in development
 - Advanced divertor configurations (e.g. snowflake, X-div)
 - Extrinsic impurity seeding for radiative divertor
- Wall conditioning techniques (i.e. B & Li coatings) mitigate risk to broader science program
- Experience of operating with high-Z will feed back into world machine knowledge base

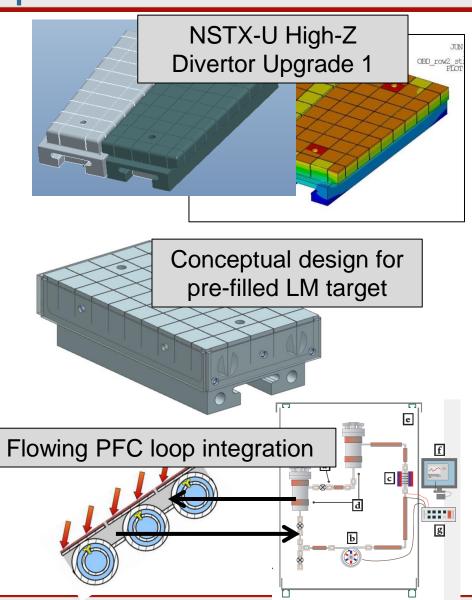
Research and development for flowing liquid lithium modules



Multiple required elements complex projects

NSTX-U

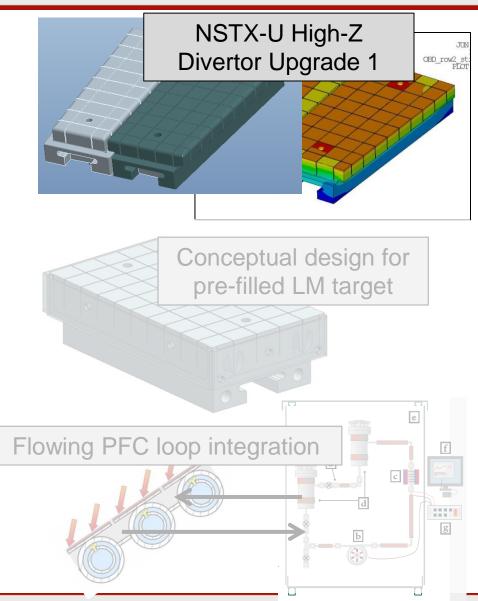
Required elements for flowing, liquid metal PFCs

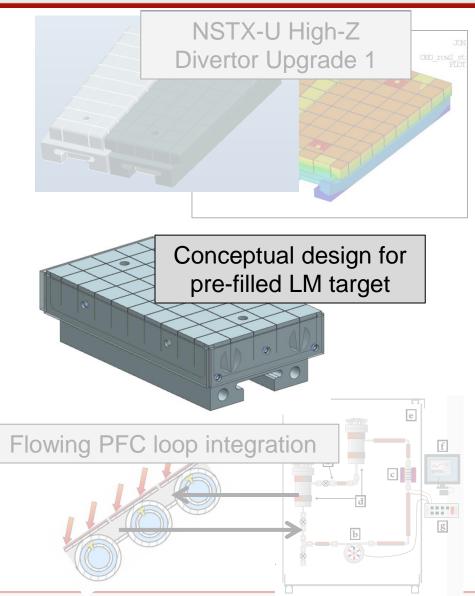

NSTX-U

A three-step progression can accelerate tests of flowing, liquid metal PFCs

High-Z divertor tiles
 + LITER

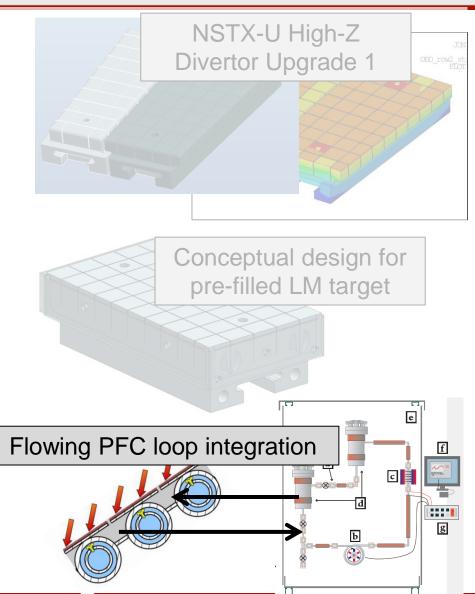
2. Pre-filled liquid-metal target


3. Flowing LM PFC

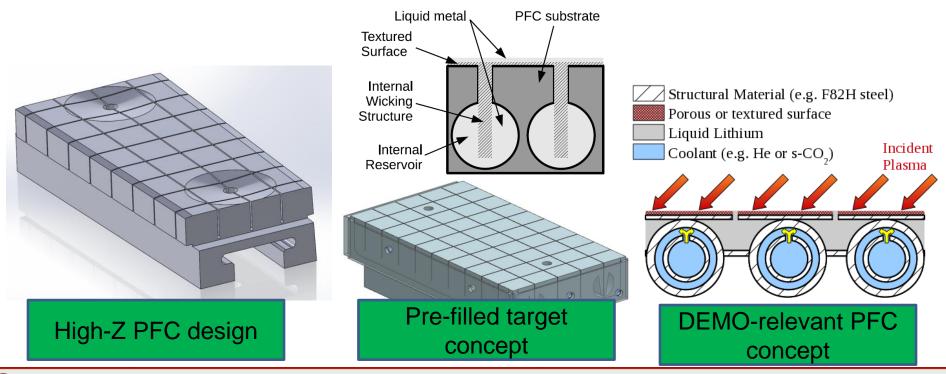

High-Z divertor tiles + Li evaporated coatings provide divertor analogue of Magnum-PSI experiments

- High-Z divertor tiles + LITER
 - Technical goals:
 - Establish non-intercalating substrate for evaporated Li
 - Provide high-heat flux substrate for Li experiments
 - Scientific goals:
 - Quantify maintenance of Li on high-temperature substrate and protection of substrate
 - Re-examine suppression of erosion in high-flux divertor
 - Understand impact and coreedge compatibility of <u>high-temp.</u> <u>target</u> with limited inventory of Li

Pre-filled targets test LM coverage, resupply and impact of significant Li source

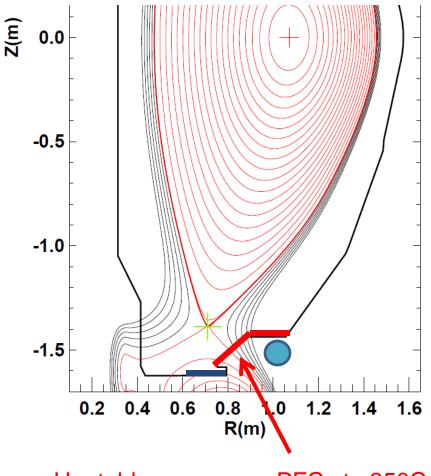

- 2. Pre-filled liquid-metal target
 - Technical goals:
 - Achieve introduction of Li in NSTX-U without evaporation
 - Realize complex target production as high-heat flux target
 - Scientific goals:
 - Test models of maintenance of LM wetting and coverage
 - Understand limits of LM passive resupply
 - Understand impact and coreedge compatibility of <u>high-temp.</u> <u>target</u> with **larger** inventory of Li

Final integration demonstrates LM introduction/extraction and inventory control


3. Flowing LM PFC

- Technical goals:
 - Integrate parallel effort on loop technology with confinement experiment
 - Achieve active introduction and extraction from exp.
- Scientific goals:
 - Assess material inventory control from LM target
 - Understand performance of passive + active replenishment techniques
 - Understand impact and coreedge compatibility of <u>high-</u> temp. target

Most mature technologies emphasized for current development path


- Capillary-restrained PFCs demonstrated in numerous machines – nearest technology
- Pre-filled targets build on high-Z substrate design (see backup)
- External Li feed into reservoir region with inertial cooling provides nearest target technology for NSTX-U

NSTX-U

Cryo-pump design requirements being refined to accommodate liquid-metal PFCs

- Design requirements for cryo-pump PFCs and divertor currently being developed
- Current plan is for significant usage of high-Z material for PFCs
 - Upper bullnose and plenum currently specified as high-Z
 - Lower bullnose material TBD
- Heating of PFCs to 350C during operations will enable liquid metal flow between discharges

Heatable cryo-pump PFCs to 350C during operations

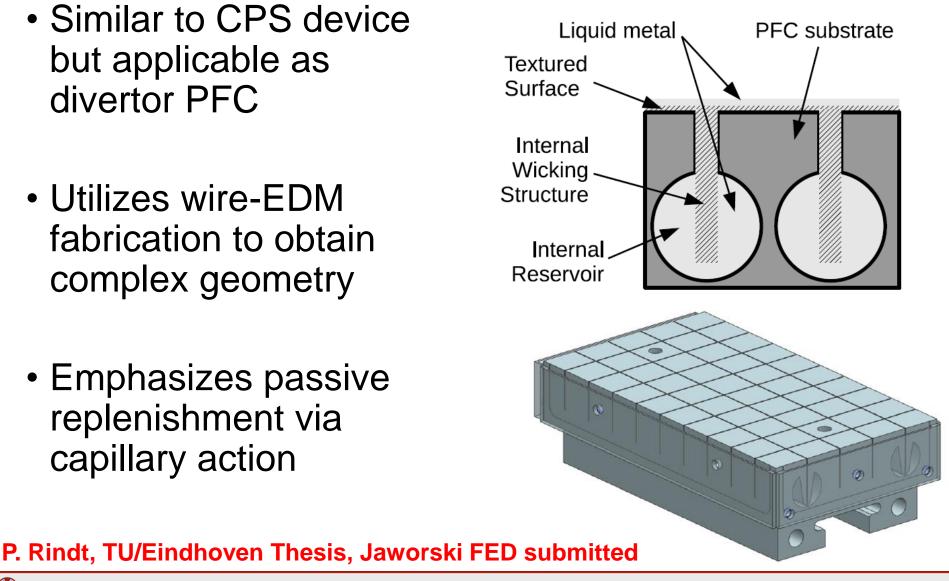
Summary

- Completion of NSTX-U mission element for comparative assessment of high-Z and low-Z liquid PFCs requires high-Z and liquid metal PFC development
- Scientific productivity will be maintained by gradual and targeted change-over of PFCs
- Staged approach addresses technical readiness by providing incremental R&D path and decision points for push to near-term liquid metal target PFCs
- Scientific questions will be addressed with mix of diagnostic, modeling and control tools ranging from PFC to core
- Strategy in place to mitigate operations risks associated with PFC upgrades
 - High-Z risks mitigated by cognizance of worldwide experience with high-Z and continued wall conditioning program
 - Liquid Li PFC risks assessed by broad off-line research and development program including off-line experiments, surface science experiments and linear plasma device testing

Thank you for your attention!

Questions?

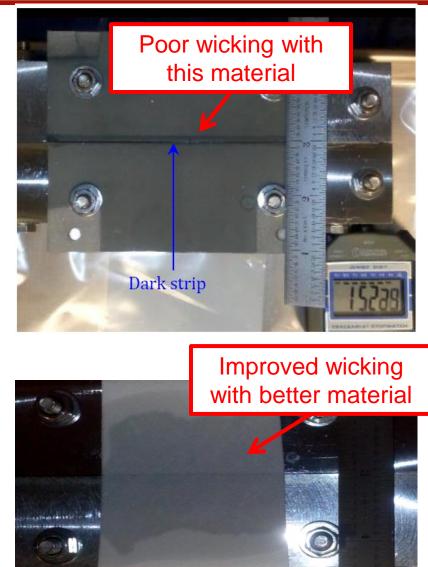
Backup slides content overview


- Slide 28: Technical aspects of pre-filled liquid metal target R&D
- Slide 39: Liquid metal PFC potential benefits
- Slide 47: Recent research results and surface science aspects of liquid metal PMI
- Slide 58: Further technical aspects of high-Z divertor target upgrade development
- Slide 73: Additional LLNL & ORNL diagnostic details

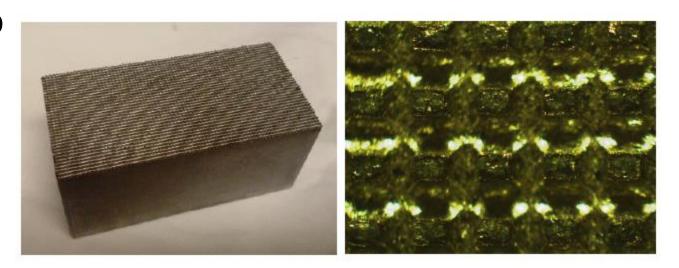
Technical aspects of pre-filled liquid metal targets R&D

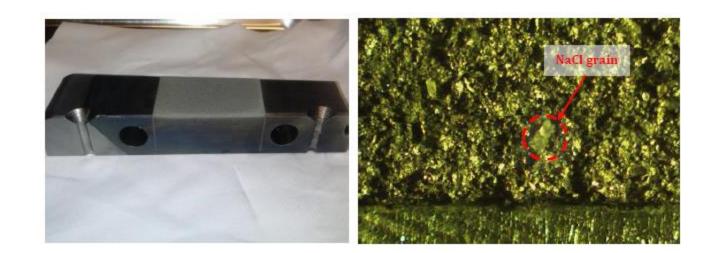
- Concept overview
- Prototype testing and initial surface testing and evaluation
- Porous-MHD equations
- R&D plan including summer collaboration experiments

Pre-filled target concept integrates Li reservoir with high-Z tile scheme

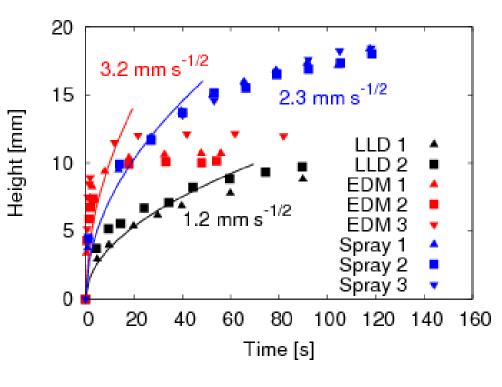

- Similar to CPS device but applicable as divertor PFC
- Utilizes wire-EDM fabrication to obtain complex geometry
- Emphasizes passive replenishment via capillary action

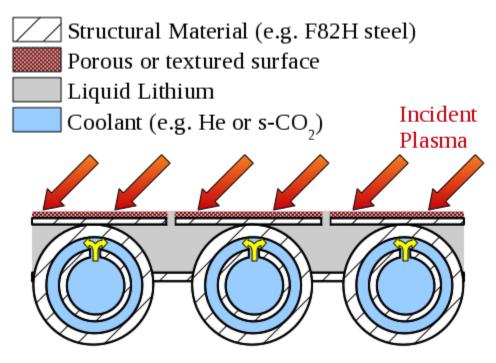
NSTX-U


Preliminary tests indicate basic concept is feasible


- Prototype testing used isopropyl alcohol as surrogate
- Initial tests demonstrated wicking to surface and feasibility to empty reservoir via surface wick
- Effectiveness highly dependent on surface capillary structure and texturing

Multiple surface treatments tested for enhancement of wicking and flow (1)


- Comparison to LLD flamesprayed material
- Wire-EDM microtexturing
- Enhancedporosity flame-spray


Multiple surface treatments tested for enhancement of wicking and flow (2)

- Simple wicking height apparatus used
- All samples show improve sorptivity (wicking) over NSTX LLD flame-spray surface
- Initial wire-EDM microtexturing similar to lasertexturing method developed by Lin et al. (J. Nucl. Mater. 2013)

An approach to a liquid-metal PFC: Activelysupplied, capillary-restrained systems

- Closely connected primary coolant and liquid lithium reservoir/supply structure
- Continuous flow to the surface to flush gettered material and maintain wetted surfaces (substrate protection)
- Inertially cooled PFC would be modest step from pre-filled targets

e.g. inter-pore spacing calculation: 1cm spacing provides replenishment of 16-40Hz emptying events at optimum pore size

Pre-filled target research and development plan snap-shot

- Multi-institution collaboration to address practical and scientific questions
 - US partners: JP Allain, DN Ruzic (UIUC)
 - International: P Rindt, N Lopes-Cardozo (TU/Eindhoven), TW Morgan (FOM-DIFFER)
- Wetting and handling tests to be conducted on candidate surface materials in the Netherlands, Illinois and PPPL
- Heat flux testing of pre-filled targets proposed as part of thesis work at Magnum-PSI (P. Rindt, Fall 2016 restart of device)

Bake-out survival and recovery is a key question for pre-filled and flowing PFCs

- Two strategies in development
 - removable macro films (demonstrated on Magnum-PSI, CPSmethod)
 - Eroding nano-scale protective films
 - Summer experiments conducted by Jaworski at UIUC with collaborators will establish viability of methods
- Surface cleaning (oxide removal) demonstrated previously
 - Elevated temperature + plasma bombardment (He, Ar)
 - PISCES-B, Magnum-PSI demonstrations

Overview of proposed experimental studies at UIUC

- Development and testing viability of nanoscale, removable films (leverage low-temperature, controlled plasma processing equipment)
- ELM-like heat pulse survival and recovery (leverage DEVEX device)
- Characterization of Kelvin effect in porous liquid metal system, multiple substrates
- Evaluation of liquid layer thickness and coverage from passively replenished systems
- Calibration of UIUC calorimeter probes

Liquid metal PFC potential benefits

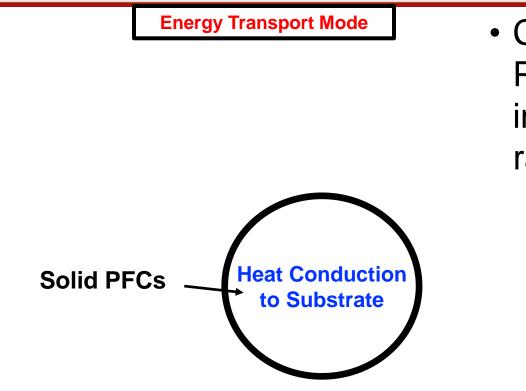
How do we assess the potential of liquid metal plasma facing components?

- What is an upgrade path to experimentally test these potential advantages?
- High-Z PFCs as test of separation of PMI from substrate
- Pre-filled targets to begin testing heatflux reduction in divertor

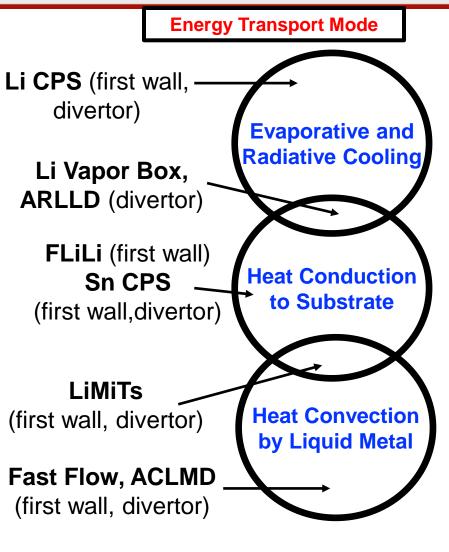
Liquid metals offer potential advantages over solid plasma-facing components (PFCs)

- Liquid metals provide a selfhealing plasma-facing material
 - Immune to thermo-mechanical stresses
 - Returns to equilibrium after perturbations
 - Replenishment eliminates netreshaping by plasma bombardment
- Separates neutron damage effects from plasma-material interactions
- Eliminates long-time constants associated with solid-wall material transport and evolution

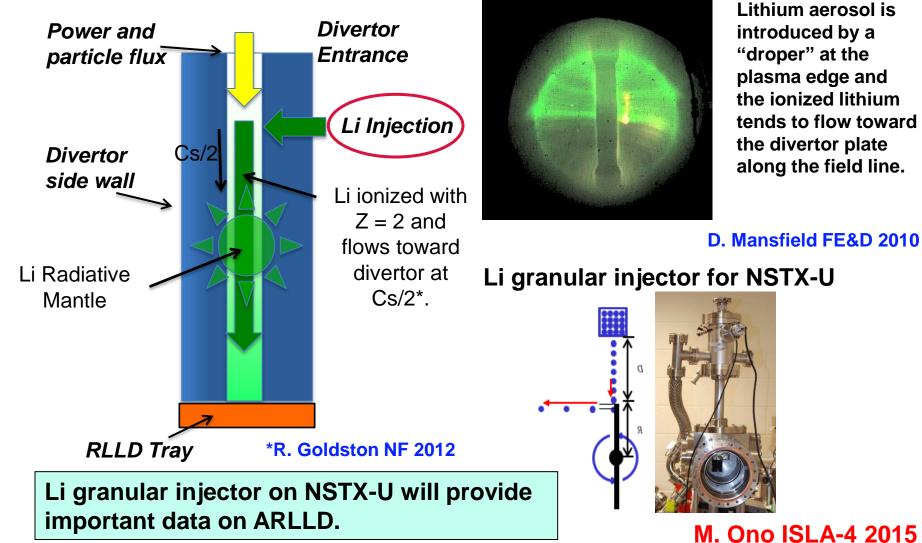
Can enhanced heat exhaust be added to this list? NSTX-U Javorski – Prospects for liguid lithium divertors – 26th SOFE – Austin, TX – June 1th, 2015


Arnoux, PFMC-14, Juelich

Coenen, et al., JNM 2013



Liquid metal PFCs provide additional pathways for energy transport


 Conventional, solid PFCs utilize extrinsic impurities to enhance radiation

Liquid metal PFCs provide additional pathways for energy transport

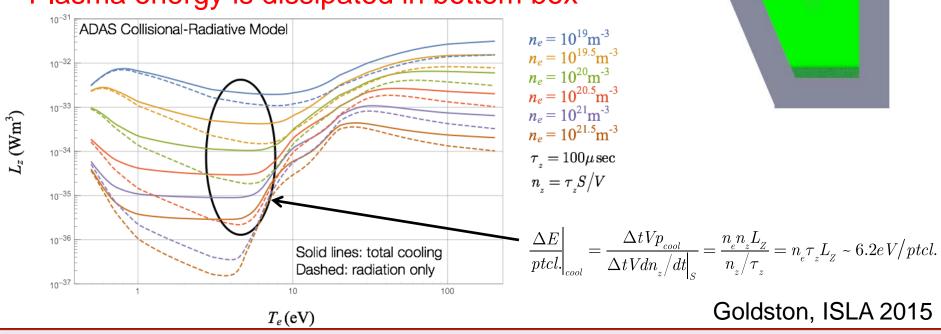
- Conventional, solid PFCs utilize extrinsic impurities to enhance radiation
- High-power density on slow-flow lithium leads to vapor-shielded targets for extreme heat flux mitigation
- Fast-flow concepts can exhaust extreme amounts of power via convection but are less mature

Active Injection of LL as First Line of Defense Li injection as needed via feed-back control

Li Aerosol in NSTX

Lithium aerosol is introduced by a "droper" at the plasma edge and the ionized lithium tends to flow toward the divertor plate along the field line.

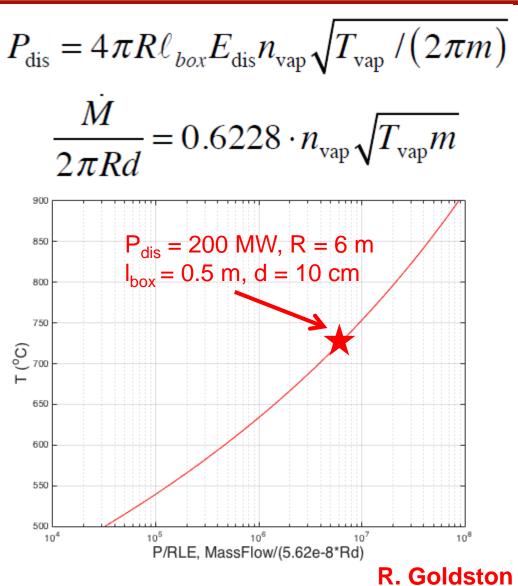
D. Mansfield FE&D 2010


Li granular injector for NSTX-U

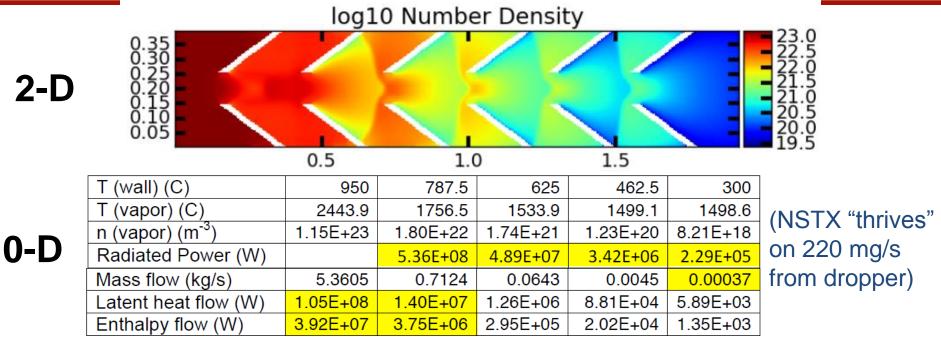
NSTX-U

Jaworski – NSTX-U PAC-37 – High-Z & Liguid metal PFCs – Princeton, NJ – Jan. 2016

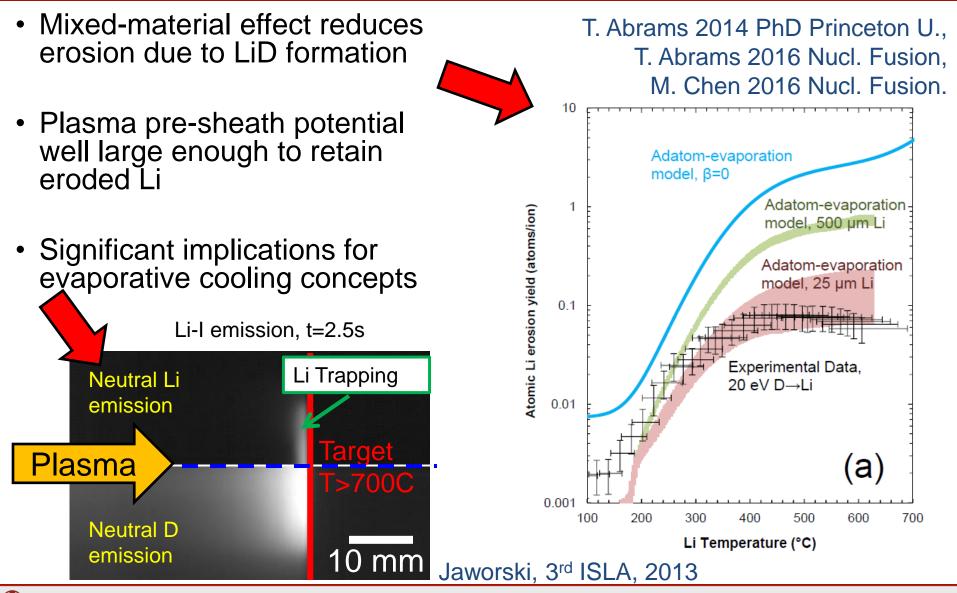
Li Vapor Box (LVB) Divertor


- Li vapor divertor target is constrained in space by differential pumping
 - Bottom chamber reaches equilibrium density of ~ 10²²/m³ @ 750 C
 - Upper chambers pump by condensation, at much lower temperature
- Plasma energy is dissipated in bottom box

Jaworski – NSTX-U PAC-37 – High-Z & Liquid metal PFCs – Princeton, NJ – Jan. 2016


Simple Model Provides Estimate of Bottom Box Operating Point

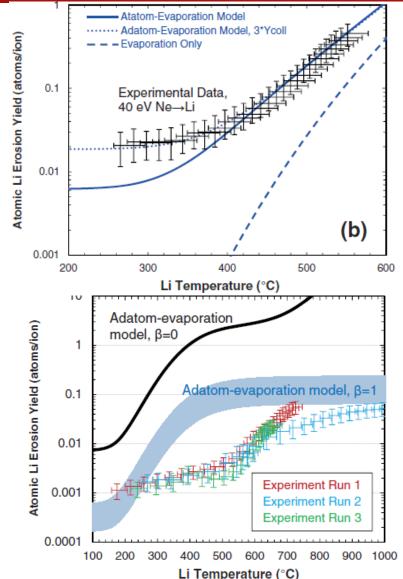
- Dissipated power estimated from
 - Langmuir flux of vapor atoms into plasma
 - Conservative E_{dis} = 10 eV energy loss per atom
- Mass efflux calculated assuming choked flow
- Reactor design point indicates only 230g/s exiting bottom box
 - Expect < 1 g/sec to reach main chamber


Initial 2-D Navier-Stokes calculations are similar to initial 0-D calculations

- Initial 0-D calculations assumed choked flow and equilibration in each chamber. Also showed pressure balance with lithium unnecessary.
- 2-D fluid calculations by Hakim and Hammett result in similar behavior (factor of ~2 difference), require reflecting boundaries (white)
- Similarity experiment being designed at PPPL to validate simulations

Recent research results and surface science aspects of liquid metal PMI

Suppressed erosion and trapping at target observed in linear plasma device

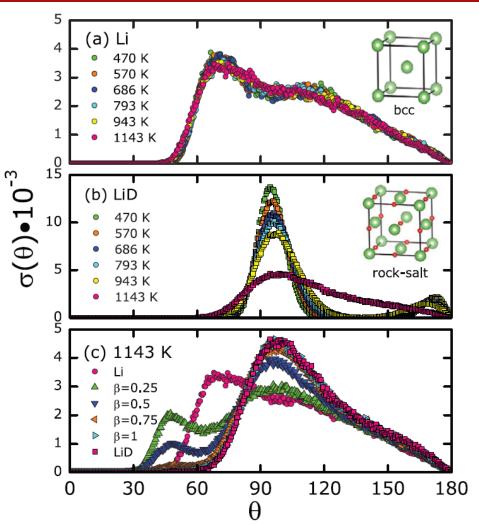


Jaworski – NSTX-U PAC-37 – High-Z & Liquid metal PFCs – Princeton, NJ – Jan. 2016

Suppressed Li erosion observed under high flux deuterium bombardment

- Experiments conducted on Magnum-PSI
 - Evaporated coatings (loaned LITER unit)
 - Pre-filled liquid targets
 - Temperature ramp from incident plasma bombardment
- Found clear mixedmaterial effect due to deuterium bombardment

Abrams, 2016 Nucl. Fusion



NSTX-U

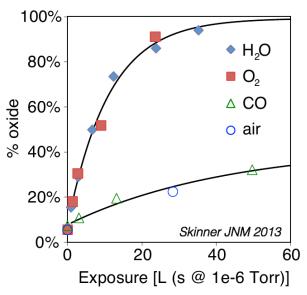
Jaworski – NSTX-U PAC-37 – High-Z & Liquid metal PFCs – Princeton, NJ – Jan. 2016

Quantum modeling of Li-D system indicates formation of LiD likely and impacts transport

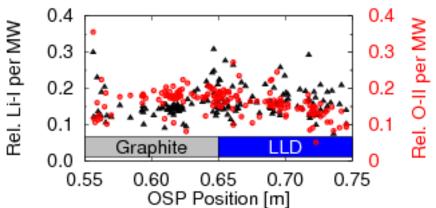
- First-principles densityfunction-theory applied to Li-D mixed problem
 - DFT simulations calculate interatomic potentials as opposed to classical MD
 - Limited to 100s of atoms and 10-20ps simulation times
- Bond angle distribution provides "finger-print" compounds in simulation
 - Shows rapid formation of LiD compounds

Chen, 2016 Nucl. Fusion

Three effects of LiD formation impacting Li erosion from sample and included in Abrams model

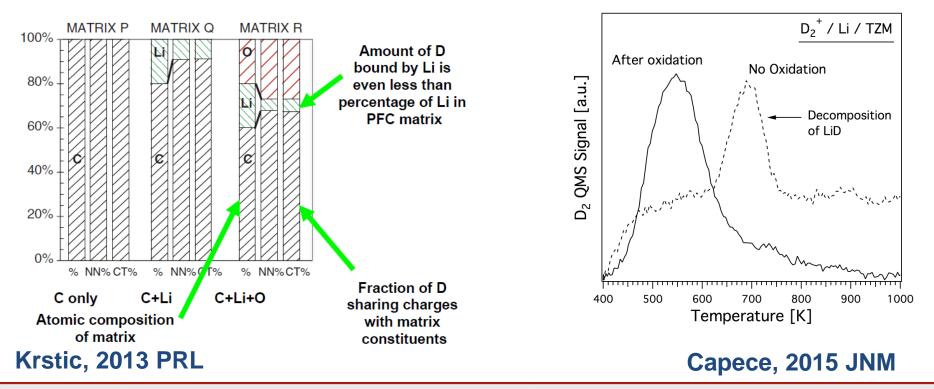

 10^{1} Reduced D diffusivity (b) L (a) D =0.50 =0.75 in LiD predicted from =1.00 10° **DFT** modeling ر (گ²/ps) ک 10-1 -D "piling up" at surface at high flux 10^{-2} Preferential D-D 1.5 2.0 1.0 1.5 2.0 1.0 sputtering $1000 / T (K^{-1})$ Sputtering Yield 0.01 Reduced Li vapor pressure over LiD vs. 0.001 homogenous case non-homogenous case pure Li 0.0001 0.2 0.8 1.0 0.0 0.40.6Chen, 2016 NF; Abrams, 2016 NF D / Li concentration

NSTX-U


Lithium reactivity leads to mixed-material surfaces

- Oxygen uptake by lithium films quantified in laboratory experiments (Skinner, 2013 JNM)
 - Oxide layer formation in ~200s in NSTX (~600s inter-shot time)
 - NSTX-U inter-shot time even longer during full-power discharges
- NSTX whole-divertor impurity emission indicates little change (Jaworski, 2013 NF)
 - Graphite and liquid-lithium divertor (LLD) surfaces have similar emission properties
 - Little impact over entire run from 60g to nearly 1kg injected Li

Oxygen uptake by Li on Mo



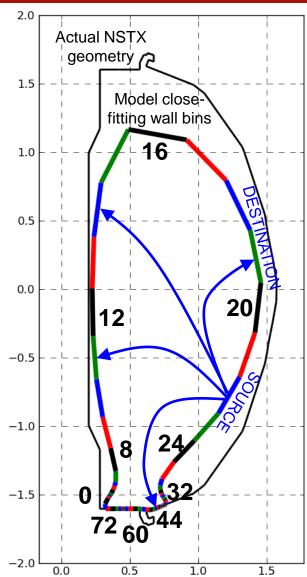
NSTX whole-divertor impurity emission

Lithium compounds exhibit complex, substrate-dependent chemistry

- Quantum modeling by Krstic indicates preferential bonding of deuterium to oxygen in carbon matrix
- Laboratory studies by Capece show increased absorption by oxidized Li, but lower thermal decomposition temperature

Material Analysis and Particle Probe (MAPP) measurements suggest deuterium retention by oxides

- Multiple surface analysis tools available (XPS, TPD, LEISS)
- Show rapid oxide formation in LTX despite very low H₂O partial press
- Good performance in LTX persists on order of 1000 hr (~40d), consistent with deuterium uptake by oxides



NSTX-U

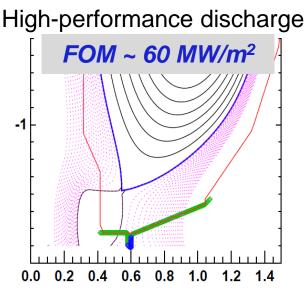
Understanding material mixing and migration major thrust in NSTX-U

- Material migration modeling with WallDYN code implemented on NSTX plasma data
 - WallDYN developed to describe material evolution (Schmid, 2011 JNM)
 - Utilizes large set of DIVIMP runs to generate transport matrix
 - Mixed-material model determines impurity production from each surface
- Initial parametric modeling undertaken to identify key variables and sensitivites
 - e.g. relative impacts of divertor conditions (Nichols, 2015 JNM)
- Impact of mixed-material erosion model
 Nichols, 2015 APS

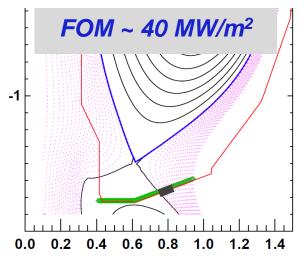
NSTX-U

Many remaining issues facing liquid metal PFCs

- If temperature limit determined to be a low temperature despite divertor trapping (e.g. LVB) then this would shift technological development for Li to fast flow (see Majeski talk next)
- Slow-flow/oozing systems can also utilize tin as alternative metal (strong push in EU)
- Significant engineering still required to qualify components and optimize designs
- Lithium-based fuel control still would benefit from overall fuel-cycle demonstration (also see Majeski talk)

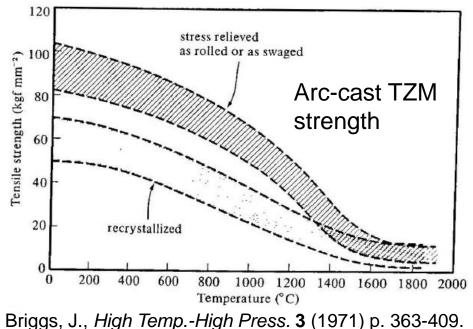

Steady progress being made to demonstrate and understand liquid metal PFCs and PMI

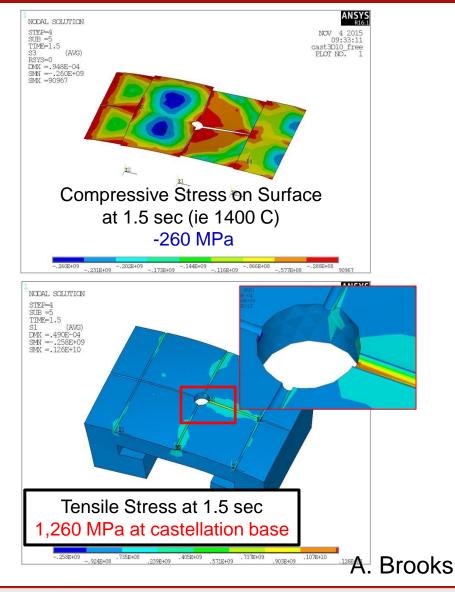
- Compatible temperature limit of liquid lithium PFCs should be experimentally demonstrated and greatly affects heat exhaust potential and concept viability e.g. vapor box or active lithium injection (Ono NF 2013)
 - Strong mixed-material effects lead to reduced lithium production
 - High redeposition fraction also observed in these experiments
- NSTX-U upgrade program aims to experimentally compare high-Z and low-Z approaches in single device with three-step upgrade scheme
- Understanding lithium PMI requires attention to mixed material effects
 - Impure lithium films observed in most (all?) major devices
 - Extrapolation to "pure" lithium flows represents major question in evaluating reactor performance
- Near-term science and technologies for realizing pre-filled targets nearly in hand and being considered for FY2018 run campaign
- Flowing PFCs can build upon operational experience gained with pre-filled targets and parallel efforts in safety and LM handling systems


Further high-Z divertor target engineering details

Replacement of outboard row of tiles provides significant heat-flux and maintains operational flexibility

- Shape developed to perform dedicated tests on outboard PFCs
 - ISOLVER free-boundary solver utilized with specified β_{N}
 - OD-analysis obtains heating power for some assumed confinement (ITERH98)
- Zero-radiation power exhaust provides heat flux figure-ofmerit (FOM)
 - FOM calculates incident power accounting for magnetic shaping only
 - High-Z shape FOM is 66% of fullpower, high-triangularity scenario




High-Z reference discharge

Castellations separate peak stress from peak temperature

- TZM weakens at high temperatures
- Castellations reduce surface stress (2-4x)
- Avoiding surface cracking and potential high-Z dust production in PFC desirable

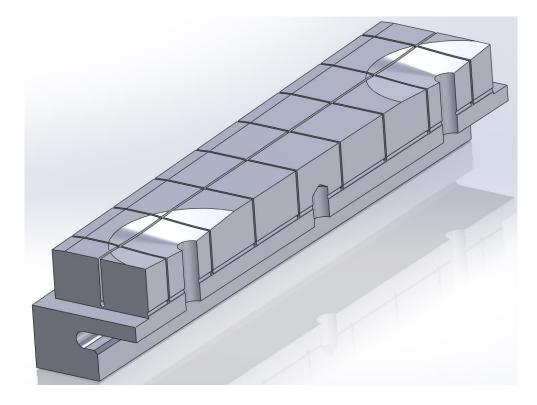
NSTX-U

Tile Design Basics

- 7 "Special" Tiles, 5 Diagnostic and 2 XP

Tile sub-type	Number required	Material
Diagnostic: OLPA	2 (over and under styles)	TZM
Diagnostic: RF Langmuir probe	1	TZM
Diagnostic: magnetic sensor	1	TZM
Diagnostic: embedded TC	1	TZM
Experimental: leading edge	1	TZM
Experimental: W+T _{recryst} effect	1	W (or W-alloy)
Total	9	

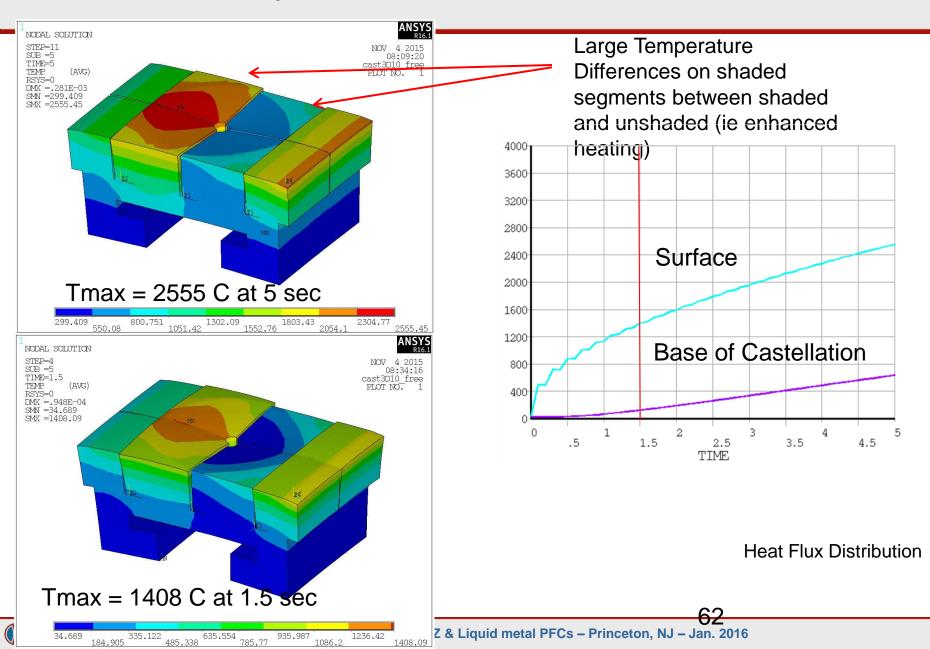
- Most tiles (not Mirnov) are modifications of the base tile type.
 - The tile which contains a Mirnov sensor has shallower castellations so as not to clash with diagnostic pocket.
- These modified base tiles are not under review at this time
 - Analysis is planned to qualify mods
 - If we find they are unable to meet the SRD requirements...
 - If they fail XP loads, modify the XP conditions
 - If they fail Normal loads, propose to eliminate the tile causing the problems.


Results for "Normal", 2 MW/m2 Nominal for 5 sec

	Configuration		Time, s	Temp, C	Temp, C Tension, Mpa		Compression, Mpa		Limits	
Location	Castellation Radius	Bolt Head Recess			Free	Clamped	Free	Clamped	Static Thermal	Fatigue 6000 cycles
Tile Surface			5	482	0.5	0.5	-43	-44	520	<500(?)
Base of Castellation	Nominal .010"	Yes	5	160	595	487	-609	-824	1300	500
Base of Castellation	Nominal .010"	No	5	160	497	398	-443	-619	1300	500
Base of Castellation	Enlarged .020"	No	5	160	388	304	-342	-478	1300	500

- Clear winner: no counterbore, larger castellation base
 - Just from this analysis, we could conclude that increasing the clamping strength would be a good idea, however when we take a look at the results from the same analysis, but for the "XP" operating parameters of 10MW/m2 for 1.5 sec...

Static Analysis Summary


- Results show that, for both operating conditions
 - Castellated tiles, with no bolt counterbores, and with increased radii at the castellation bases are adequate designs to avoid yielding.

However, what about Cyclic Fatigue?

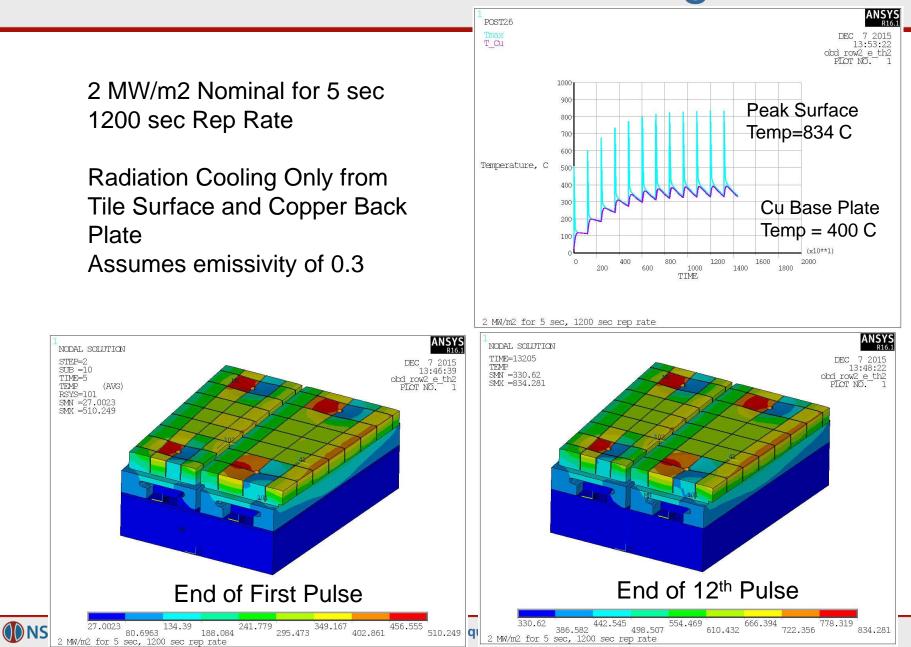
Surface Temperature Reaches 1400 C after 1.5s

Results summary table

"Normal" 2 MW/m2 and 5 sec pulse

	Configuration		Time, s	Temp, C	Tension, Mpa		Compression, Mpa		Limits	
Location	Castellation Radius	Bolt Head Recess			Free	Clamped	Free	Clamped	Static Thermal	Fatigue 6000 cycles
Tile Surface	Enlarged .020"	No	5	479	17	15	-43	-44	1300	<500(?)
Base of Castellation			5	277	388	304	-342	-478	1300	500

"XP" 10 MW/m2 and 1.0 sec pulse


	Configuration		Time, s	Temp, C	Tension, Mpa		Compression, Mpa		Limits	
Location	Castellation Radius	Bolt Head Recess			Free	Clamped	Free	Clamped	Static Thermal	Fatigue 6000 cycles
Tile Surface	Enlarged .020"		1.5	~1200	70	72	-256	-255	520	<500(?)
Base of Castellation		No	1.5	~100	495				1300	500

*at sharp corner where fillet is needed & and stress excluding corner

10MW/m2, 1.0 sec

- Reduce duration of XP shots
 - By lowering the duration from 1.5 to 1, we effectively lower the peak stresses at the castellation base, gaining thousands of cycles.
 - The $q\sqrt{t}$ of this parameter is 10, which is the same as in the "normal" operation conditions
 - Appears to be a healthy limit for this system.
- Racheting concerns?
 - The overall effect of racheting, for a q \sqrt{t} value of 10, is an increase of about 330C.
 - Assumes emissivity of 0.3
 - For the area of interest, the castellation base, this means at the end of 12 cycles, the castellation temperature reaches ~450C and the yield strength remains essentially unaffected.
 - This also means that, with racheting, even at the reduced duration of 1 sec, we have a wider range of surface temps with which to experiment.
 - 1200 1500C

Thermal Ratcheting

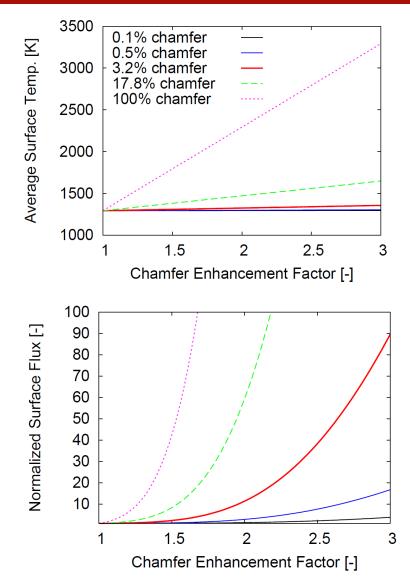
65

Analysis Summary

• Recap

- Tiles in free expansion, with no counterbores, and have castellations with enlarged bases are adequate to withstand both "normal" and "XP" operational conditions.
 - Neither conditions cause yield
 - Both conditions can survive 10^3 cycles
- Racheting will have little to no effect on tile performance
 - May actually benefit experiments

Design Summary


- The basic tile design is complete.
 - Confident in performance for 2 years of operations and experiments
- A few remaining tasks...
 - Would like to optimize chamfers to help minimize internal stresses
 - Need a few more analysis runs to help create more detailed heat flux/duration limits for operational control. (Project deliverable)
 - Begin analysis on special tiles, to confirm/deny compliance with requirements.

Schedule

- Priority on machining procurement
 - -Once FDR is complete, chits are put to bed
 - Finish analyses, finalize basic tile design
 - Begin procurement package on basic tile design, start special tile analyses (simple thermo-mechanical to check thermal stresses)
 - Finish package by 1st week in Jan, submit to procurement
 - If special tiles need review, hold it 2nd week in Jan
 - Special tile procurement to follow close behind normal tiles, asking for partial deliveries & priority on special tiles (to allow for ample time to pot diagnostics)
 - Other procurement items (new Bellevilles, grafoil, shim stock, bolts...) follow tile procurement.
 - Complete by end of Jan
 - Concurrent with these tasks, begin writing installation procedure with whomever will take over this job.

Inhomogeneous surface temperatures result in larger total particle flux

- Leading edges result in larger average temperature
 - Chamfers localize heating
 - Fish-scaling increases average heating
- Exponential vapor pressure produces strong increase in particle flux
- Lithium likely to erode fastest from areas of enhanced heating

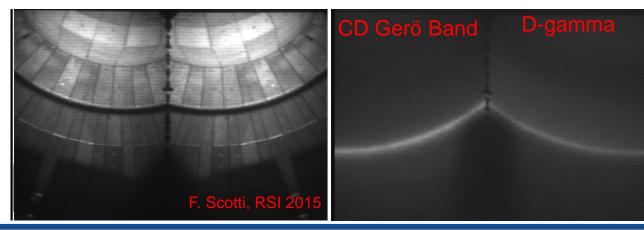
NSTX-U plasma-facing components (PFCs) will be subjected to significant heat and particle fluxes

- NSTX-U is the newest US machine
 - 2x NBI heating power (<13MW)
 - 2x current (<2MA) and field (<1T)
 - 5x pulse length (<5s)
- Experimental capabilities push toward DEMOrelevance
- Open divertor provides unique opportunities for experiments

2nd NBI system

Upgraded OH and toroidal fields

	R_0	P_{AUX}	P/R	P/S	$ au_{pulse}$
Machine	[m]	[MW]	[MW/m]	$[MW/m^2]$	[s]
NSTX*	0.86	6.8	8	0.2	1
$NSTX-U^*$	0.93	19	21	0.6	5
$ m JET^{\dagger}$	2.95	35	12	0.2	20
$DIII-D^{\dagger}$	1.74	20	11	0.4	6
AUG^{\dagger}	1.65	27	16	0.6	10
CMOD^{\dagger}	0.7	6	9	0.7	2
$MAST^{\dagger}$	0.87	7.5	9	0.25	1
ITER^{\dagger}	6.2	100	16	0.15	400
${f ST}{f -}{f Pilot}^{\ddagger}$	2.2	190	86	0.7	6×10^6
$\mathbf{ST}\text{-}\mathbf{DEMO}^{\ddagger}$	3.2	520	161	0.9	∞



Further LLNL and ORNL diagnostic details

New LLNL diagnostics for high-Z sources and transport studies

- Two new radiation-hardened, intensified CID cameras equipped with custom two-color optics (TWICE-1,-2) (Mo I)
- UV-VIS-NIR divertor spectrometer (DIMS) for high resolution multi-chordal spectroscopy (Mo I)
- Divertor SPRED VUV spectrometer (Mo III Mo VIII)
- Divertor radiometer based on AXUV diode array (LADA)
- Complements diagnostic suite for low Z impurity emission

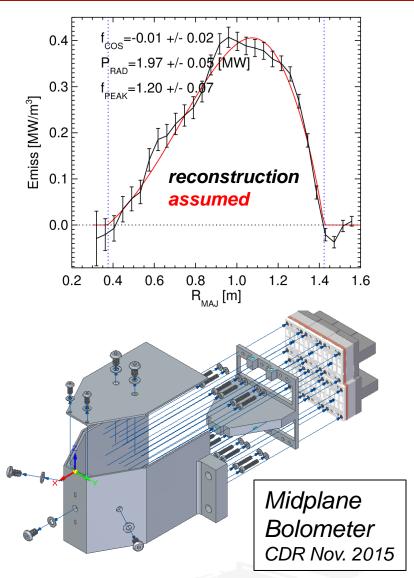
Author, Title

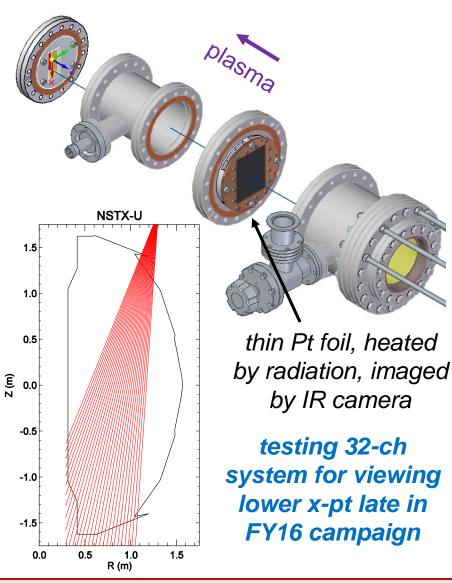
NSTX-U

TWICE-2 views and NSTX-U measurements

72 👢

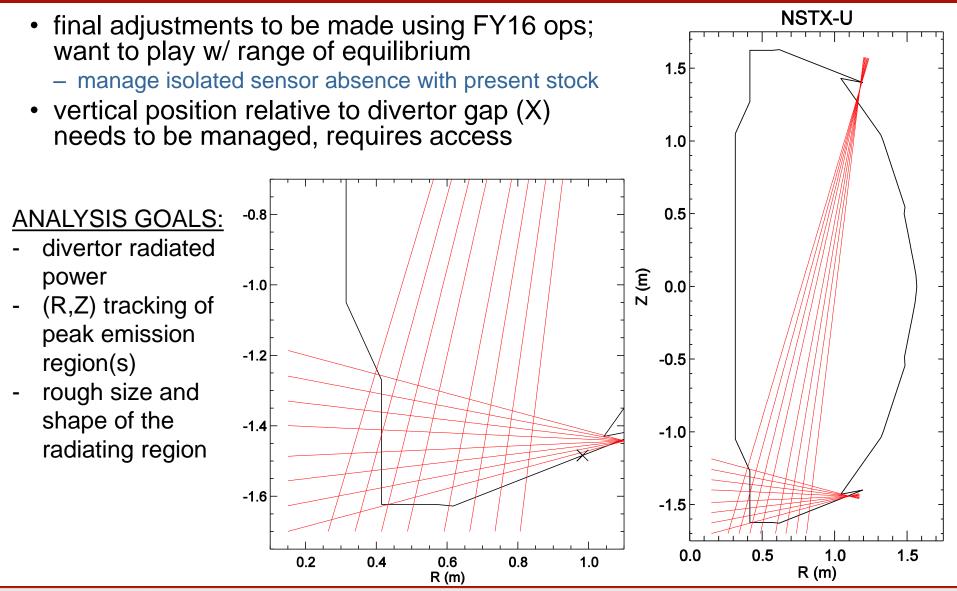
New LLNL diagnostics and tools for high-Z core impurity transport studies


- Unique suite of three EUV spectrometers (XEUS, LoWEUS, MonaLisa)
 - Continuous spectral coverage 10-450 Å for low and high-Z line emission measurements with ~30 ms time resolution
- Laser Blow-Off (LBO) system
 - Determination of impurity confinement times, penetration efficiencies
 - Determination of impurity radial transport coefficients
 - Funded by LLNL internal funding
- Mo, W spectroscopy and atomic physics



NSTX-U Developing Tools for Measuring Core and Boundary Radiation

- failures during bake prevented utilization of resistive bolometer sensors for P_{RAD} on NSTX
- present efforts to redesign and expand bolometer diagnostics to support FY17 operations
 - 16 ch of lower divertor viewing for boundary radation
 - 24 ch tangential midplane core radiation (simulated results shown)
- resistive bolometers complemented by faster unfiltered AXUV diode arrays presently installed
- future expansions anticipated


Exploring New Bolometry Innovations to Support NSTX-U Research Thrusts

- spatial resolution and coverage of radiation diagnostics critical for power-balance, radiative exhaust physics, etc.
- developing prototype IR video bolometer (IRVB) to improve resolution for expected 2D radiation structure in divertor
 - ORNL and PPPL collaborating w/ NIFS and DIFFER
- results will inform possible future expansion at NSTX-U and could influence diagnostics at other US/international labs

Line of Sight Layout for Bay-J & Bay-I

Resistive Bolometer Conceptual Design Review 11/2/2015