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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control  
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two Multi-TSG Experiments + CC&E (cross cutting and enabling) 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES Priorities and Summary 
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• Explore unique ST parameter regimes to advance 
predictive capability – for ITER and Beyond 
– WH&CD: Advanced ICRH modeling and code validation 
– SFSU: Modeling of reconnection during CHI 

• Develop Solutions for PMI Challenge 
– ASC: Closed loop control of advanced divertor geometry, 

divertor radiation 

• Advance ST as a possible FNSF/ Pilot Plant  
– HW&CD, SFSU: Non-inductive startup and rampup 
– ASC: Fully non-inductive scenarios, profile control 

Recall: NSTX-U Mission Elements 
And How the Integrated Scenarios SG Fits In 
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• Deputy SG Leader: Roger Raman (U. of Washington) 
• Advanced Scenarios and Control 

–  TSG Leader: Devon Battaglia (PPPL) 
–  Deputy TSG Leader: Stefan Gerhardt (PPPL) 
–  Theory/Modeling Rep.: Francesca Poli (PPPL) 
–  University Rep.: Egemen Kolemen (Princeton University) 

• RF Heating and Current Drive 
–  TSG Leader: Rory Perkins (PPPL) 
–  Deputy TSG Leader: Joel Hosea (PPPL) 
–  Theory/Modeling Rep.: Nicola Bertelli (PPPL) 
–  University Rep.: Paul Bonoli (MIT) 

• Solenoid Free Start-up and Ramp-up 
–  TSG Leader: Dennis Mueller (PPPL) 
–  Deputy TSG Leader: Roger Raman (U. of Washington) 
–  University Rep. + Theory/Modeling Rep.: Fatima Ebrahimi (Princeton University) 

Integrated Scenarios Leadership Team 
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• Deputy SG Leader: Roger Raman (U. of Washington) 
• Advanced Scenarios and Control 

–  TSG Leader: Devon Battaglia (PPPL) 
–  Deputy TSG Leader: Stefan Gerhardt (PPPL) 
–  Theory/Modeling Rep.: Francesca Poli (PPPL) 
–  University Rep.: Egemen Kolemen (Princeton University) 

• RF Heating and Current Drive 
–  TSG Leader: Rory Perkins (PPPL) 
–  Deputy TSG Leader: Joel Hosea (PPPL) 
–  Theory/Modeling Rep.: Nicola Bertelli (PPPL) 
–  University Rep.: Paul Bonoli (MIT) 

• Solenoid Free Start-up and Ramp-up 
–  TSG Leader: Dennis Mueller (PPPL) 
–  Deputy TSG Leader: Roger Raman (U. of Washington) 
–  University Rep. + Theory/Modeling Rep.: Fatima Ebrahimi (Princeton University) 

Integrated Scenarios Members are Highly 
Supportive of Physics Operations 

Past, Present, 
and Future 
NSTX(-U) 
Physics 

Operators 
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IS SG Supports Many NSTX-U Research 
Milestones 

FY2017 FY2016 
18 16 

Develop physics + operational tools for 
high-performance: κ, δ, β, EF/RWM 

Assess H-mode confinement, pedestal, 
SOL characteristics at higher BT, IP, PNBI 

Assess disruption mitigation, initial  
tests of real-time warning, prediction 

Develop high-non-inductive fraction NBI 
H-modes for sustainment and ramp-up 

Assess fast-wave SOL losses, core  
thermal and fast ion interactions at 
increased field and current 

Run Weeks: 

FES 3 Facility 
Joint Research 

Target (JRT) 

Integrated 
Scenarios 

Core 
Science 

Boundary 
Science  
+ Particle 
Control 

C-Mod leads JRT 

Assess effects of NBI injection on fast-
ion f(v) and NBI-CD profile 

Assess scaling, mitigation of steady-
state, transient heat-fluxes w/ advanced 
divertor operation at high power density  

R17-1 

Assess high-Z divertor PFC performance 
and impact on operating scenarios 

R17-2 

Assess impurity sources and edge and 
core impurity transport 

R18-1 

Assess role of fast-ion driven instabilities 
versus micro-turbulence in plasma 
thermal energy transport 

IR18-2 

Control of current and rotation profiles to 
improve global stability limits and extend 
high performance operation 

R18-2 

Assess transient CHI current start-up 
potential in NSTX-U 

R18-3 

Investigation of power and momentum 
balance for high density and impurity 
fraction divertor operation 

IR18-1 

FY2018 
16 12 

IR17-1 

R17-4 

R16-1 

R16-2 

R16-3 

Incremental 

Examine effect of configuration on 
operating space for dissipative divertors 

DIII-D leads JRT 

18 

Assess τE and local transport and 
turbulence at low ν* with full confinement 
and diagnostic capabilities 

R17-3 

TBD 
NSTX-U leads JRT 

Begin ~1 year outage for  
major facility enhancement(s) 

sometime during FY2018 
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The Research Forum Determined  
the Run Plan 

Topic Total Allocation 
High-Beta Scenario 

Development 
3.5 

Low Current Ramp-Up 2  
(1 WH&CD + 0.5 SFSU + 0.5 ASC) 

Control 4 
CHI 2.5 

HHFW in the Flat-Top 3 
Total 15 

ASC+RF+SFSU 8+3.5+3.5 = 15 

TSG Requested 
Days 

Allocated 
Days 

ASC 33 8 

SFSU 14.5 3.5 
WH&CD 9 3.5 

 
•  Run time allocation set 

to large extent by the 
milestones 

•  Significantly more days 
requested than 
allocated. 

 
•  Much discussion 

produced a tight 
research plan. 

•  SG structure was very 
valuable in setting 
these priorities. 
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#1– Scenario Develop for NSTX-U and Next-
Steps 
#2 - Axisymmetric Control Development 
#3 - Disruption Avoidance By Controlled 
Discharge Shutdown 
#4 - Understand Scenario Physics for Next 
Step Devices 
 
Defined in the 5 Year Research Plan 
For thrust sub-elements, see: 
http://nstx-u.pppl.gov/program/science-groups/integrated-
scenarios/advanced-scenarios-and-control 

ASC Research Thrusts Focus on Plasma 
Control and Scenario Development 
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Significant Modeling Supports the ASC 
Research Program 

•  Fully relaxed non-inductive operating 
points have been explored with free-
boundary TRANSP calculations 
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Operation 
Year 

BT [T] Current 
Goal [kA] 

Duration 
Goal 

2016 <=0.75 ~600-800 A few τE 

2017 0.75-1.0 ~600-1000 1-2 τR 

Out-Years 1 800-1300 Up to 4.5 s 
at lower IP 

Research Timeline for 100% 
Non-Inductive Scenarios

S.P. Gerhardt, et al, Nuclear Fusion 52 083020 (2012) 

R16-3 

•  These scenarios, obtained at first with 
an inductive ramp-up, will provide a 
target for non-inductive ramp-up studies

•  See talk by F. Poli and M. Boyer 
for more recent modeling results.

fNI=1 

qmin=1 
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•  Non-Inductive Scenario 
Development (XP-1507, 
Gerhardt, et al.) 
–  Goal: Develop 100% non-

inductive scenarios with IP~ 600 
kA. 

–  Key Issues: Thermal transport, 
vertical stability at high-κ, n=1 
stability   

–  Modeling/Analysis: TRANSP 

Scenario Studies Will Focus on 100% NI 
and High-Current Long-Pulse 
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•  Long Pulse Development (XP-1554, Battaglia et al.)  
–  Goal: Utilize 80 kV beams, optimized OH waveform, to achieve longest possible pulse 
–  Key Issues: fuelling optimization, preventing q0 evolving too far, impurity control. 
–  Modeling/Analysis: TRANSP 
 

•  Sustained Reverser Shear (XP-1575 H. Yuh, et al.) 
–  Goal: Utilize off-axis NBI to sustain reversed shear 
–  Key Issues: MHD leading to current redistribution, too-high pressure peaking. 
–  Modeling/Analysis: TRANSP, GS2, other microstability codes pending results 

These support milestones R16-2, R17-4, R18-2, & ASC thrusts #1 and #4  

S.P. Gerhardt, et al, Nuclear 
Fusion 52 083020 (2012) 
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NSTX-U Experiments Are Already Using a Significantly 
Expanded Plasma Shutdown Scheme 

SS=0:  
Ramp-Up & 

Flat-Top 

SS=4: 
Insufficient IP 

SS=3:  
IOH Loss 

of Control 

SS=2:  
Fast IP 

Rampdown 

SS=1:  
Slow IP 

Rampdown 

•  NSTX PCS: No means of 
detecting a disruption, or 
ramping down the plasma 
current based on events. 

•  NSTX-U PCS: State 
machine orchestrates the 
shutdown. 

•  Disruptions detected by: 
–  Too large IP error 
–  Too large ZP(dZP/dt) 
–  Large locked n=1 modes 

•  Presently using “Fast IP 
Rampdown” on every shot 
–  waiting to use “Slow-IP 

Rampdown”. 
–  Have not yet turned on n=1 

disruption triggering. 

Supports ASC thrust #3 
Diagram of the State Machine Presently Implemented in PCS 

“SS” = “Shutdown State” 
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NSTX-U Experiments Are Already Using a Significantly 
Expanded Plasma Shutdown Scheme 

•  NSTX PCS: No means of 
detecting a disruption, or 
ramping down the plasma 
current based on events. 

•  NSTX-U PCS: State 
machine orchestrates the 
shutdown. 

•  Disruptions detected by: 
–  Too large IP error 
–  Too large ZP(dZP/dt) 
–  Large locked n=1 modes 

•  Presently using “Fast IP 
Rampdown” on every shot 
–  waiting to use “Slow-IP 

Rampdown”. 
–  Have not yet turned on n=1 

disruption triggering. 

Slow Drift Up, But No VDE or Disruption 

IP 

Example: This shot 
would have been a 
strong VDE in NSTX 

IP Request 
(including asynchronous 
transition to rampdown) 

ZP(dZP/dt) 

ZP(dZP/dt) threshold 

Normal 

Fast IP Rampdown 

Insufficient IP 

ZP from EFIT 

t=0.705 t=0.793 

t=0.849 t=0.897 

Supports ASC thrust #3 

“State” 
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•  Snowflake Divertor Control [XP-1508, Kolemen and Vail] 
–  Goal: Demonstrate control of the unique dual X-point geometry. 
–  Method: New PCS algorithm with dual X-point tracking based on 

rtEFIT flux map, PID mechanism for adjusting divertor coil currents. 
–  Key Issues: rtEFIT quality, coil forces during control oscillations, 

interaction with other shape controllers 

Control Experiments Support NSTX-U 
Program and Next Step Devices 

These support milestone R18-2, & ASC thrusts 1, 2, and 4 

•  βN and li Control Study (XP-1509, Boyer et al) 
–  Goal: Demonstrate closed loop combined control of βN and li. 
–  Method: Realtime measurements with rtEFIT, control via beam, shape, maybe n=3 

actuation. 
–  Key Issues: rtEFIT quality, beam modulation effects on plasma, limited range of li 

actuation 
•  Current Profile Controllability Study (XP-1532, Boyer et al, 0.75 days) 

–  Goal: Demonstrate closed loop control of the current profile 
–  Method: Dedicated modulation shots for system identification type purposes, attempts at 

closed loop control if technically possible. 
–  Key Issues: rtMSE availability, beam modulation effects on plasma 

•  Rotation Control [XP-1564, I. Goumiri, et al] 
–  Goal: Demonstrate closed loop control of the rotation profile and βN. 
–  Method: Beam for torque and heating, NTV for breaking. State-Space control algorithm 
–  Key Issues: rtVφ availability, beam modulation effects on plasma 
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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control 
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two Multi-TSG Experiments + CC&E 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES Priorities and Summary 
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Wave H&CD TSG Thrusts Dedicated to HHFW & EC 
Applications and Code Validation 

For thrust sub-elements, see:  
http://nstx-u.pppl.gov/program/science-groups/integrated-scenarios/
wave-heating-and-current-drive 

• #1 Develop FW/EC heating for fully NI plasma current 
start-up and ramp-up 
– Joint XP with Solenoid-Free Start-Up TSG…will describe 

dedicated experiment later in the talk. 

• #2 Validate state-of-the-art RF codes for NSTX-U and 
predict RF performance in future burning plasma 
devices. 
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Modeling Is Confirming The Importance of 
RH Cutoff in Determining SOL Losses  

•  NSTX showed a large loss of RF power 
in the SOL 

•  Modeling shows large RF field amplitude 
in SOL under certain conditions 
–  Seen in full-wave code AORSA 

§  N. Bertelli et al., Nucl. Fusion 54 (2014) 083004. 
§  N. Bertelli et al., Nucl. Fusion 56 (2016) 016019. 

–  Also seen in cylindrical cold-plasma model 
§  Wave power (axial Poynting flux) confined to 

periphery, only gradually penetrating the core 
§  R. J. Perkins et al., 41th EPS Conference on 

Plasma Physics P-1.011. 
•  RF fields in divertor cause RF sheath; 

potentially large enough to account for 
SOL losses 
–  Increased sheath voltage and electron 

current predicted to substantially increase 
heat flux to tiles 
§  R. J. Perkins et al., Phys. Plasma 22 (2015) 

042506. 

Cutoff 
layer

Lower SOL density 
(nant = 1x1012 cm-3)

Higher SOL density 
(nant = 2x1012 cm-3)

kφ = 13 m-1

Heating phasing
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Modeling Is Confirming The Importance of 
RH Cutoff in Determining SOL Losses  

•  NSTX showed a large loss of RF power 
in the SOL 

•  Modeling shows large RF field amplitude 
in SOL under certain conditions 
–  Seen in full-wave code AORSA 

§  N. Bertelli et al., Nucl. Fusion 54 (2014) 083004. 
§  N. Bertelli et al., Nucl. Fusion 56 (2016) 016019. 

–  Also seen in cylindrical cold-plasma model 
§  R. J. Perkins et al., 41th EPS Conference on 

Plasma Physics (2015) P-1.011. 

Model antenna 
adjustable 

phase 

Dense core 
nc ~ 5e19 m-3 

Diffuse 
Annulus (‘SOL’) 
na ~ 1-3e18 m-3 

Conducting 
vessel 

wall 
 

Axial poynting flux 
only gradually penetrates core  

D
istance along field lines 

0.25 m 

0.75 m 

1.25 m 

1.75 m 

y 

x 
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Modeling Is Confirming The Importance of 
RH Cutoff in Determining SOL Losses  

•  NSTX showed a large loss of RF power 
in the SOL 

•  Modeling shows large RF field amplitude 
in SOL under certain conditions 
–  Seen in full-wave code AORSA 

§  N. Bertelli et al., Nucl. Fusion 54 (2014) 083004. 
§  N. Bertelli et al., Nucl. Fusion 56 (2016) 016019. 

–  Also seen in cylindrical cold-plasma model 
§  R. J. Perkins et al., 41th EPS Conference on 

Plasma Physics (2015) P-1.011. 
•  RF fields in divertor cause RF sheath; 

potentially large enough to account for 
SOL losses 
–  Rectified sheath voltage and e- current 

predicted to substantially increase heat flux 
to tiles 
§  R. J. Perkins et al., Phys. Plasma 22 (2015) 

042506. 

Axial poynting flux 
only gradually penetrates core  

D
istance along field lines 

0.25 m 

0.75 m 

1.25 m 

1.75 m 

y 

x 
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NSTX-U Prospect: Higher Toroidal Field 
May Reduce These SoL Losses 

• Right-hand cutoff density proportional to B: 
– Larger cutoff density may reduce losses. 
  

•  AORSA modeling confirms this expectation. 
– Using NSTX discharge data and NSTX-U TRANSP scenarios. 

nφ=-21 
nφ=-12 
 

nφ=-21 
nφ=-12 
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•  Increased BT may increase the thermal and fast ion absorption 
–  Decreased ion cyclotron harmonic number, increased cyclotron absorption 

•  AORSA predictions for NSTX-U : 
–  greater deuterium heating when Ti > Te 

–  Ion heating increases and electron heating decreases as kφ decreases 

NSTX-U Prospect: Wide Range of Possible 
Partitions for HHFW Power Absorption 

N. Bertelli, et al AIP Conference Proceedings 2014 

•  This work will benefit from including non-Maxwellian effects in TORIC v.5 
–  Bertelli et al. APS 2015 

Ti/Te~2.3 Ti/Te~1.2 Ti/Te~0.6 
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SoL Propagation and Core Absorption Physics 
Will be Addressed in Two XPs 

•  Characterize SoL Losses of HHFW Power 
in H-Mode (XP-1510, Perkins, et al.)  
•  Goal: Assess scaling of SoL losses as a 

function of edge parameters, BT 
•  Diagnostics: 

§  fraction of HHFW power lost & spiral intensity along 
length of spiral 

§  RF voltage at the most intense portion of the spiral, 
§  SOL density profiles in front of antenna. 

–  Modeling/Analysis: TRANSP, AORSA 

•  HHFW Absorption in NB Heated Plasmas 
(XP-1533, Bertelli, et al) 
•  Goal: Characterize RF absorption as a 

function of RF phase, toroidal field 
•  Analysis/Modeling 

•  GENRAY/CQL3D, TORIC, AORSA, AORSA
+CQL3D, ORBIT-RF 

•  Continue validation of CQL3D with fast ion 
diagnostic (FIDA) data. 

 

These support milestone IR17-2 ,  WH&CD Thrusts #2 

R. Harvey et al., 56th APS-DPP 2014 
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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control 
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two multi-TSG experiments + CC&E 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES Priorities and Summary 
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#1 – Establish and Extend Solenoid-Free 
Plasma Start-up 
#2 - Test NBI Current Ramp-Up 
#3 - Ramp-up CHI plasma discharges using 
ECH, HHFW and NBI and test plasma gun 
start-up 
 
For thrust sub-elements, see: 
http://nstx-u.pppl.gov/program/science-groups/integrated-
scenarios/solenoid-free-start-up-and-ramp-up 

SFSU Research Thrusts Are Synergistic with Other IS 
TSGs, Address Key Issues for a low-A FNSF 
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NSTX & NSTX-U Design Incorporates Features for 
Coaxial Helicity Injection 

CHI in NSTX/NSTX-U •  Inner and outer vacuum 
vessels 

•  Injector and absorber 
regions 

•  Injector coils & TF 
•  Capacitor bank 

–  2kV, 50 mF 
•  JxB force drives the 

plasma into the main 
chamber. 

•  Closed surfaces form 
when the injector (bank) 
current dies away or is 
crowbarred. 
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NSTX-U Upgrades that Facilitate CHI Start-up 

NSTX-U Machine 
Enhancements for CHI  

–  > 2.5 x Injector Flux (proportional to Ip ) 
–  About 2 x higher toroidal field (reduces 

injector current requirements) 

CHI in NSTX/NSTX-U
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Raman, et al., IEEE Trans. Plasma Sci. (2014) 

TSC Simulations in the NSTX-U Geometry support up to 
400kA Current Start-up Capability in NSTX-U 
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Plasmoids)

))))Simula,on) ))))Experiment)

At High Lundquist Number, Plasmoid Mediated Reconnection 
Identified as Assisting in Flux Closure 

•  Sweet Parker (S-P) reconnection 
in the injector region at low 
Lundquist number

•  At high Lundquist number the S-P 
current sheet is plasmoid unstable 

 
•  Plasmoids seen in NSTX CHI F. Ebrahimi, et al., PRL (2015)NIMROD Simulations
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•  Transient CHI Startup in NSTX-U (XP-1432. R. Raman). 
– Motivation: New geometry of CHI gap, PF coils, PFCs mandate 

experiments to establish transient CHI. 
– Goal: Establish reliable flux closure in the NSTX-U geometry. 
– Method: Start at NSTX-level fields and currents, then increase BT and 

injector flux once reliable discharges have been formed. 
– Key Issues: Breakdown with new narrow gap, tailoring the flux-footprint 

with new coils, electrode conditioning. 
– Modeling/Analysis: NIMROD + Utilize the extensive suite of cameras to 

assess plasmoid formation and effects. 
•  Inductive Flux Savings of Inductively-driven Transient CHI 

Plasmas (XP-1535, B. Nelson) 
– Motivation: Coupling transient CHI to induction is a step towards 

demonstrating compatibility of CHI with subsequent ramp-up schemes. 
– Goal: Establish transient CHI discharge and ramp it up with induction 
– Key Issues: Persistent enough CHI plasma for good coupling, hand-off to 

position and IP control. 

Two FY-16 Experiments Will Exploit the New 
Upgrade Capabilities, Target Coupling to Induction 

These support milestone R18-3 ,  SFSU goal #1 
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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control 
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two Multi-TSG Experiments + CC&E 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES priorities and Summary 

 
See talk by F. Poli for modeling/theory 

motivation for these two joint XPs 
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Effective Heating of Low-IP Plasmas Will Be Further 
Developed 

35 

300 kA inductive NSTX target heated to 3keV 
using ~1 MW HHFW

Motivation: 
•  Critical to heat low-IP plasmas to 

the levels needed for NBI CD. 
•  Very efficient heating of a low 

current plasma was demonstrated 
on NSTX  
•  Bootstrap current dominant 

when ITB forms 
Goal 
•  Re-establish ~300 kA, high-fNI, 

HHFW heated scenarios in NSTX-U 
•  Attempt overdrive. 
Key Issues: 
•  Shape control and ELMs impact 

on the RF coupling. 
•  ITB formation 
Analysis/Modeling 
•  TRANSP, TRANSP+TORIC 
•  AORSA These support SFSU thrust 

#3, WH&CD thrusts #1 & 2 

See talk by Poli for how this type of heating 
fits into the full ramp-up scheme 

Low Plasma Current, Fully Non-Inductive, 
HHFW H-Mode Plasmas 
(XP-1534, Taylor) 

G. Taylor et al., Phys. 
Plasmas 19 (2012) 042501 
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Ability of Large Tangency Radius Beam to Couple 
Power/Current at Low Current Will Be Assessed 

•  Motivation 
–  Calculations predict high current drive efficiency 

at low IP for large tangency radius sources 
•  Goal:  

–  Assess lowest IP (& therefor ne, Te) for NB 
coupling as a function of tangency radius 

•  Key Issues: 
–  Shine through losses vs. bad orbit losses 
–  FI pressure peaking 
–  Confinement & plasma control at low IP 

•  Method 
–  High BT, 300<IP<500 kA, 80-90 kV beams. 
–  FI diagnostics and comparison to TRANSP 

predictions 
–  HHFW may be used to increase Te 

•  Analysis/Modeling 
–  TRANSP/NUBEAM 

These support milestone SFSU thrust #2, ASC thrust #1 J. Menard, et al., Nuclear Fusion 42, 083015 (2012) 

NB Ramp-Up Studies (XP-1567, F. Poli) 
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•  Optimization of the Vertical Control Algorithm (XP-1501, Boyer) 
–  Goal: Optimize control observer parameters, feedback gains, and then push to 

higher elongation. 
–  Analysis: TOKSYS, TRANSP-ISOLVER 

•  Tuning of Automated Rampdown Software (XP-1502, Gerhardt) 
–  Goal: Tune shutdown algorithm for the more challenging H-mode rampdown. 
–  Key Issues: Shape handoff using ISOFLUX, position transients during H->L. 

•  HHFW Antenna Conditioning (XMP-026, Hosea) 
–  Goal: Antenna conditioning under plasma conditions, after successful antenna 

conditioning 
•  Commissioning CHI System (XMP-126, Raman) 

–  Goal: Commission CHI capacitor bank and dedicated instrumentation, make 
first CHI discharges. 

–  Key Issues: Noise reduction on new instrumentation, DCPS configuration 
during CHI, noise on magnetic diagnostics. 

•  LGI Control (XMP-130, Lunsford) 
–  Goal: Commission Lithium Granule Injector, including PCS algorithms 

IS SG Also Supports Cross-Cutting and 
Enabling XPs & XMPs 
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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control 
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two Multi-TSG Experiments + CC&E 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES priorities and Summary 

 



39 NSTX-U PAC 37, Integrated Scenarios SG Overview, S.P. Gerhardt, 1/27/2016 

• 28 GHz gyrotron system is largely motivated by the 
need to connect CHI to HHFW and NB heating. 
– See talk by F. Poli for details on how SFSU research will be 

fundamentally enhanced. 

• 28 GHz gyrotron will also allow EBW heating studies 
to move forward, following a launcher upgrade. 
 

• High-Z PFC upgrade will provide metal electrode 
surfaces, which will likely prove advantageous for CHI 
once properly conditioned (reduced low-Z impurities, 
radiation). 

Proposed Facility Enhancements Will Be a Dramatic Step 
Forwards for SFSU and WH&CD Research 
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•  Cryo-pump should resolve a long-standing, legitimate criticism 
of NSTX scenario research…lack of density control. 
– Will likely be a key capability in exploiting the full NSTX-U magnet and 

heating systems. 
– Will facilitate targeted scenario and physics studies. 
– Refer to talks by R. Maingi, M. Ono for more details. 

•  High-Z PFC enhancement will introduce critical, exciting 
challenges to scenario and control development. 
– May make active heat flux management as critical as other control loops, 

as will be the case in ITER and other next steps. 
–  See talk by M. Jaworski for details. 

•  NCC will provide an additional key actuator for profile control. 
– Closed loop pedestal height control will be assessed as an ELM mitigation 

strategy. 
– More flexible rotation control strategies will be developed, which may be 

important for scenario optimization 

Exciting Opportunities for ASC Research 
Will Come out of the Facility Enhancements 
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Outline 
• Goals & Organization 
• Milestones and the Research Forum 
• Research Results, Status, and Plans 

– Advanced Scenarios and Control 
– RF Heating and Current Drive 
– Solenoid Free Start-Up 
– Two Multi-TSG Experiments + CC&E 

• Key Research Enabled by the Proposed Facility 
Enhancements 

• Connection to FES priorities and Summary 
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•  Advancing predictive capability, model validation 
– Control oriented modeling, start-up modeling, RF code validation 
§  See also talks by Boyer, Poli, in addition to these slides. 

• Mitigating / avoiding transients 
– Disruption avoidance via i) advanced profile control and ii) 

discharge shutdown studies 
•  Taming the PMI 

– Closed-loop control of advanced divertors (magnetic geometry and 
radiation) 

•  Establishing physics basis for FNSF 
– Non-inductive start-up, ramp-up, and sustainment 
– RF Physics 

•  Supporting discovery science, basic plasma physics 
– Reconnection physics during CHI 

IS SG Research Supports FES Priorities 
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• Strong support for the non-inductive startup, ramp-up, 
and sustainment across the three TSGs. 

• Active modeling efforts in all areas support the NSTX-
U programmatic goals and FES priorities 

• Developing the H&CD actuator physics and closed 
loop control techniques for next step devices. 

• We have an exciting research program planned for the 
FY16 run and are ready to go! 

This SG Works to Solve Scenario Physics Problems for 
the NSTX-U Program, ITER, and Next-Step Devices 
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Backup 
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Ion Absorption of HHFW Power Has 
Potential Benefits and Disadvantages 

•  In NSTX, a significant fraction of (core) HHFW power absorbed 
by fast ions. 
–  Seen in neutrons, NPA spectrum, FIDA. 

•  Ion acceleration to loss orbits can be a 
strong loss mechanism 
–  detrimental heat loads to the PFCs. 

•  FW interactions with beam ions could 
be useful for influencing energetic 
particle modes [EP TSG] 
–  Modification of fast-ion distribution 

§  D. Liu et al., Plasma Phys. Control. Fusion 52 (2010) 
025006. 

–  Suppression of energetic-particle driven 
modes 
§  E. D. Frederickson et al., Nucl. Fusion 55 (2015) 

013012. 
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High fraction of open flux conversion to closed flux seen 
in simulations with narrow injector flux footprint 

46 

•  CHI in NSTX-U configuration naturally has a narrower injector flux foot-
print due to improved Injector coil positioning 

•  Due to higher Lundquist number in NSTX-U CHI simulations, closed flux 
surfaces form even during the actively injected phase 

 F. Ebrahimi, et al., submitted to NF-Lett.NIMROD Simulations
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Hardware Upgrades Support HHFW Operations and 
Physics Studies 

 
           

 

•  Twelve-strap antenna re-installed 
– New compliant, bellowed feedthrough used 

to withstand disruptions at IP=2 MA 
–  Additional grounding points added to raise 

voltage standoff  
 
•  Six RF sources recommissioned; 

conditioning started 
– Recent breaker failure being investigated; 

replacement parts are ready to go  

•  New color fast camera and infrared 
camera will monitor antenna 

•  New sets of divertor Langmuir probes  
– RF-suitable electronics have been designed, 

reviewed, and tested 

Additional 
grounding to 

between antenna 
box and vessel 

Poloidal Cut of  
Antenna Strap 

Compliant Feedthroughs 
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Distribution of First Authors (not including CC&E, XMPs) 
~12 First Authors 

Author XP Run Days Area 
Gerhardt 100% non-inductive 2 (ASC) Scenario 

Development 
(3.5 Days) 

Battaglia Longest Possible Pulse 1 (ASC) 

Yuh Reversed Shear 0.5 (ASC+0.5 T&T) 

Kolemen SFD Control 1.5 (ASC) Control 
Development 

(4 Days) 
TBD Rotation Control 0.5 (ASC) 

Boyer Current profile control, βN + li control 2.0 (ASC) 

Bertelli Absorption in NB plasmas 1.0 (RF) HHFW at Higher 
Current 
(3 Days) 

Perkins SOL Losses in H-mode 1.75 (RF) 

D. Smith Measure Density Perturbation with BES 0.25 (RF) 

Poli NBI Coupling to Low-Current Plasmas 1 (0.5 ASC+ 0.5 SFSU) 
 

Ramp-Up 
 (2.0 Days) 

Taylor/Poli Low Current, high fNI, HHFW 1  (0.5 RF+ 0.5 SFSU) 

Raman Transient CHI startup 2.0 (SFSU) CHI (2.5 Days) 
Nelson Inductive Rampup 0.5 (SFSU) 
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AORSA show different behavior of SOL power losses 
between HHFW and IC minority heating regimes 

NO cut-off 

• 	  Alcator	  C-‐Mod	  &	  EAST	  results	  show	  a	  
decreasing	  of	  E	  field	  amplitude	  outside	  LCFS	  
with	  increasing	  nant	  	  

• 	  No	  transi@on	  to	  higher	  SOL	  power	  losses	  
• Results	  perhaps	  more	  intui@ve	  	  
	  	  	  w.r.t.	  the	  NSTX/NSTX-‐U/DIII-‐D 
increase	  SOL	  density	  	  	  	  	  	  enhances	  antenna-‐plasma	  
coupling	  	  	  	  	  	  lower	  frac@on	  of	  power	  lost	  	  
to	  the	  SOL	  region	  

• Consistent	  with	  the	  C-‐Mod/ASDEX-‐U	  exp.	  
 

•  SOL	  RF	  field	  amplitude	  increases	  when	  FW	  	  
can	  propagate	  in	  the	  SOL	  

•  Direct	  correla@on	  between	  SOL	  RF	  field	  
amplitude	  ,	  FW	  cut-‐off	  loca@on	  ,	  and	  SOL	  
power	  losses	  behavior	  

•  Agreement	  with	  DIII-‐D	  sim./exp.	  
•  Larger	  evanescent	  region	  predicted	  at	  higher	  
fields	  achievable	  in	  NSTX-‐U,	  favorable	  for	  
future	  experiments	  

•  Possible	  aspects:	  cavity	  modes	  &	  magne@c	  
pitch	  angle	  

HHFW IC minority 

VS. 

N. Bertelli et al., Nucl. Fusion 56 (2016) 1 

C-mod 
nφ = 10 
f = 80 MHz 
ν/ω = 0.01 
 
 
 

NSTX-U 
scenario 
BT = 1 T 
f = 30 MHz 
ν/ω = 0.01 
 
 

NO	  cut-‐off	  NO	  cut-‐off	  
SO

L 
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w
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•  implementation of the bi-Maxw. and slowing down analytical distributions 
•  Capability to read a numerical fast ion distr. func. from NUBEAM is underway  
 

Non-Maxwellian effects, generally, result in finite changes in the amount and 
spatial location of absorption. 

Extended TORIC v.5 to include non-Maxwellian effects 
both in HHFW and IC minority heating regimes  

Fast ion absorption 
assuming a bi-Maxw 
distr. func. in NSTX  

Bertelli et al. APS 2015 
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Modeling Is Confirming The Importance of 
RH Cutoff in Determining SOL Losses  

•  NSTX showed a large loss of RF power 
in the SOL 

•  Modeling shows large RF field amplitude 
in SOL under certain conditions 
–  Seen in full-wave code AORSA 

§  N. Bertelli et al., Nucl. Fusion 54 (2014) 083004. 
§  N. Bertelli et al., Nucl. Fusion 56 (2016) 016019. 

–  Also seen in cylindrical cold-plasma model 
§  Wave power (axial Poynting flux) confined to 

periphery, only gradually penetrating the core 
§  R. J. Perkins et al., 41th EPS Conference on 

Plasma Physics P-1.011. 
•  RF fields in divertor cause RF sheath; 

potentially large enough to account for 
SOL losses 
–  Rectified sheath voltage and e- current 

predicted to substantially increase heat flux 
to tiles 
§  R. J. Perkins et al., Phys. Plasma 22 (2015) 

042506. 
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•  Hardware: 
– New control computers, reduced latency links to the power supplies 
–  realtime Vphi in final testing, realtime MSE measurement in development. 

•  Methods: 
– Complete prose documentation of all physics algorithms within PCS. 
– Control design with full-physics models in TRANSP 

§  See talk by Dan Boyer 

•  Algorithms: 
– Reviewed every line of code in every control algorithm 
– New shape control capabilities during the ramp-up and ramp-down 
– New automatic discharge shutdown system  
– More modular beam control, vertical control, ISOFLUX shape control 

algorithms. 
–  In final development: 

§  Snowflake divertor control 
§  Rotation/Current profile control 

ASC (and Broader NSTX-U) Research Facilitated by 
Numerous Upgrades to the Plasma Control System 


