

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

NSTX-U Transport & Turbulence (T&T) research

Walter Guttenfelder for the NSTX-U Team

NSTX-U PAC-39 Jan. 9-10, 2018

OUTLINE

Background and research goals

• Recent highlights supporting research plans

• Near term and longer-term research plans

• Summary

OUTLINE

Background and research goals

• Recent highlights supporting research plans

• Near term and longer-term research plans

• Summary

Understanding confinement scaling ($\tau_E \sim 1/v$) at low collisionality is critical for future spherical tokamaks (ST)

- In NSTX and MAST H-modes, dimensionless confinement time scales inversely with collisionality, $\Omega_{ci}\tau_{E}\sim\nu_{*}^{-0.8}$ [Kaye, NF (2007, 2013); Valovic, NF (2011)]
- Next generation STs (Pilot Plant, FNSF, CTF) will operate at lower ν_{\star}
- \Rightarrow What determines transport & confinement scaling?
 - How does this influence access to operational scenario goals (e.g. 100% non-inductive)? [see Battaglia talk]
- Conventional (R/a~3) tokamak H-modes are thought to be governed by electrostatic toroidal drift waves:
 - $(k_{\perp}\rho_i \sim 1)$ lon temperature gradient (ITG, $\gamma \sim \nabla T_i$) & trapped electron mode (TEM, $\gamma \sim \nabla T_e, \nabla n_e$)
 - ($k_{\perp}\rho_{e}$ ~1) Electron temperature gradient (**ETG**, γ ~ ∇ T_e)

NSTX-U

Normalized e⁻ collisionality ($v_e^* \sim n_e/T_e^2$)

Many features of low aspect ratio + high beta are stabilizing to electrostatic toroidal drift waves

Stabilizing effect Impact Short connection length Smaller average "bad curvature" Quasi-isodynamic (~constant B) at high β , Grad-B drifts stabilizing strong Shafranov shift [Peng & Strickler, NF 1986] Large fraction of trapped electrons, BUT **Reduced TEM drive** [Rewoldt, PoP 1996] precession weaker at low A Stabilizing to ES-ITG Strong coupling to δB_{\perp} at high β [Kim, Horton, Dong, PoFB 1993] Small inertia (nmR²) & uni-directional NBI $E \times B$ shear stabilization (dv₁/dr) heating gives strong toroidal flow & flow shear [Biglari, Diamond, Terry PoFB 1990]

• Stabilization of ITG consistent with observed neoclassical ion transport: $Q_i \approx Q_{i,NC} \& \Gamma_{imp} \approx \Gamma_{imp,NC}$

- BUT high beta drives electromagnetic instabilities:
 - Microtearing modes (MTM) ~ $\beta_e \cdot \nabla T_e$
 - Kinetic ballooning modes (KBM) & energetic particle modes (EPM) ~ α_{MHD} ~ $q^2\nabla P/B^2$ & ∇P_{fast}
- Large shear in parallel velocity can also drive parallel velocity gradient (PVG) instability ~dv_{||}/dr

NSTX-U T&T research addresses high-priority ST-specific transport issues

T&T RESEARCH GOALS (thrusts from five-year plan):

- Extend confinement scaling to much lower collisionality at high beta & strong shaping
- Distinguish mechanism(s) underlying ST energy confinement scaling, as well as particle, impurity & momentum transport
- Validate first-principle and reduced models using a range of scenarios, e.g. from L-mode to 100% non-inductive H-mode
- \Rightarrow Enable more reliable extrapolation & prediction to future ST-based devices

Leverage cutting-edge ST capabilities of NSTX-U:

- Highest field and heating power with strong shaping \rightarrow access to highest β at lower v_*
- Unique current, flow profile & fast-ion phase space control from 2nd off-axis NBI + 3D coils
- RF heating (HHFW) for flexible thermal & impurity transport studies (see Perkins talk)
- Comprehensive suite of turbulence diagnostics
 - <u>Multi-scale density fluctuations (δn)</u>: BES (low-k), FIR high-k₀ scattering system, DBS (low- to intermediate-k)
 - <u>Magnetic field fluctuations (δB)</u>: CPS

The challenges confronted by NSTX-U T&T research benefit the broader tokamak community & burning plasma regimes

- Unique in accessing wide range in (β, ν) → requires validating a variety of theoretical drift wave transport mechanisms
 - Predominantly in electron-loss dominated regimes (burning plasma relevant)

The challenges confronted by NSTX-U T&T research benefit the broader tokamak community & burning plasma regimes

- Unique in accessing wide range in (β, ν) → requires validating a variety of theoretical drift wave transport mechanisms
 - Predominantly in electron-loss dominated regimes (*burning plasma relevant*)
- High beta, strong shaping & significant fast ion content challenges numerical codes
 → requires improved EM simulations & reduced transport models
 - Important for high performance AT scenarios & burning plasma regimes (significant ITPA T&C activity)
- Global & compressional Alfvén eigenmodes (GAE/CAE) influence thermal electron transport* → requires validating stability thresholds & saturation mechanisms
 - Important to understand dependence on $V_{fast}/V_{Alfvén}$, β_{fast}/β_{tot} , and fast-ion phase space and consequences in burning plasma regimes (see Podestà talk)

*Transport occurs through stochastic electron orbits & CAE-KAW coupling (backup slides)

OUTLINE

Background and research goals

Recent highlights supporting research plans

See Y. Ren, NF (2017) for recent review paper

• Near term and longer-term research plans

• Summary

FY18 Milestone & collaborations address priority T&T issues in preparation for NSTX-U operations

- R(18-3) milestone: "Validate & develop electron thermal transport models in STs"
 - Model validation (TGLF, MMM, Rafiq-MTM)
 - Model qualification by comparing with first-principles gyrokinetics

Collaboration with GA & Lehigh U.

- Data analysis & uncertainty quantification
- Active DIII-D collaboration from 2017 "NSTX-U campaign" (see Kaye talk)
 - . "Investigate v_{*} scaling at ST-relevant q95" \rightarrow Clarify role of R/a & q95 on $\tau_{E} \sim v_{*}^{\alpha}$
 - 2. "Validate electromagnetic turbulence predictions" \rightarrow Validate GK w/ CPS ($\sim \delta B$) + synth. diagnostic
 - 3. "CAE ω and k dependence on beam pitch angle and energy" \rightarrow Measure onset, validate sims.
- MAST-U collaboration in FY18-20
 - Transport analysis & confinement scaling at increased B_T , I_P

High β NSTX transport validation studies highlight the importance of electromagnetic microturbulence

- Nonlinear simulations of core MTM turbulence predict significant transport at high β & ν; collisionality scaling (χ_{e,MTM}~ν_e) consistent with global confinement (τ_E~1/ν)
- At high β & <u>lower v</u>, KBM modes are predicted *in the core* \Rightarrow may set ultimate limit to confinement scaling -- *many similarities to DIII-D/EAST high-\beta_{pol}* (Staebler APS 2017, Guttenfelder APS 2015)

 High priority goal of T&T research is to directly measure internal δB via cross polarization scattering (CPS) to validate simulations (collaboration with DIII-D & UCLA) [see Kaye talk]

Nonlinear gyrokinetic simulations & transport models are evolving to address challenges at high β

- Global electrostatic simulations illustrate importance of non-local effects at finite-ρ*=ρ_i/a (Ren, NF 2013, IAEA 2016) (*backup slides*)
 - Global GTS simulations have also uncovered unique DTEM mechanism with $\chi_{e,DTEM} \sim v_*$ scaling (Wang, PoP 2015, NF 2015)
 - Development of global electromagnetic GK codes GTS, XGC1 is advancing (*PPPL theory*)
- Recently developed kinetic/fluid MTM model recovers many gyrokinetic trends (Rafiq, PoP 2016, APS 2016); profile predictions being tested —
 - T_e predictions using Rebut-Lallia-Watkins MTM model useful for high- v_* discharges, but does not capture correct parametric scalings (Kaye, PoP 2014)
 - Updating TGLF by qualifying with gyrokinetics over broader range of ST scenarios, β & R/a (R18-3 Milestone)
 - ⇒ Is there an optimal aspect ratio for core performance goals? (see Menard talk)

NSTX-U research will advance high-k measurement for validating ETG & multi-scale simulations

- Measured trends in high-k fluctuations (with ∇T_{e} , ∇n_{e} , New FIR high-k_o scattering FDR done • s, $\gamma_{\rm F}$) consistent with ETG theory (*backup*) Laser table & waveguide installed (UC-Davis) BUT majority of nonlinear gyrokinetic ETG simulations Unique dual-scattering-scheme allows for flexible predict Q_e too small to explain experiment measurements in 2D wavenumber space (k_{θ}, k_{r}) Measured high-k power spectra Electron heat flux (exp & sim) New high-k Simulated ETG spectra • low ∇n exp. scattering geometry 0.5 5 low ∇ n hiah ⊽n Measurable -501.5 z (m) (k_{θ}, k_{r}) exp. 20 Scattered P (dB) ₹ M -60 high ∇ beams -0.5-70 sim -10.5 kρ sim. low hiah -1.5 R (m)^{1.5} 10 0.5 0 2 f (MHz) R/L Ruiz-Ruiz, PoP (2015)
- Unique synthetic diagnostic developed to validate GK simulations (Ruiz-Ruiz, APS 2017) (*MIT collaboration*) and to enable projections for NSTX-U
- Progressing towards multiscale simulations to investigate Q_e underprediction
 - Guided by TGLF multi-scale transport model (R18-3 milestone)

NSTX-U L-mode operation provides valuable flexibility for physics validation studies

OUTLINE

Background and research goals

• Recent highlights supporting research plans

• Near-term and longer-term research plans

• Summary

Near-term NSTX-U operational & research T&T plans focus predominantly on electron thermal transport

- Characterize H-mode confinement scaling at increased B_T , I_p , $P_{NBI} \rightarrow$ lower v_*
 - First operation milestone (R19-1); Multiple run days scheduled for FY16
- Investigate parametric turbulence & transport dependencies and validate GK simulations and transport models
 - Exploit 2nd NBI, 3D coils and operational flexibility (see Battaglia talk) + comprehensive turbulence measurements
- Measure CAE/GAE activity, mode frequencies and structure
 - Exploit 2nd NBI for GAE/CAE stabilization to study impact on T_e, χ_e (see Podesta EP talk)
- Investigate pinch & residual stress momentum transport contributions (follows prior ITPA work)
 - Exploit 2nd NBI, 3D coils & long-pulse capability with new centerstack

Longer-term T&T research plans will use facility enhancements to support integrated operational goals

- Address electron particle transport in long-pulse H-modes
 - Exploit lithium and cryopump (as available) to modify sourcing (see boundary talks)
- Dimensionless (v_* , β , q, ρ_*) scaling studies (requires density control)
- Measure high-Z impurity transport using LBO
 - Investigate prior to any high-Z PFC coverage (see Jaworski talk)
- Use RF heating (HHFW) for flexible transport studies (see Perkins Talk)
- Continued model validation enhancing predictive capability (continuous process)
 - Improved drift wave models (MMM, TGLF)
 - Develop & test $\chi_{e,EP}$ model using ORBIT + measurement/HYM predictions

OUTLINE

Background and research goals

• Recent highlights supporting research plans

• Near term and longer-term research plans

• Summary

Summary: NSTX-U T&T research is addressing key issues for ST & MFE research

- Measure and understand energy confinement scaling at high field, high power to improve confidence in future ST projections (high β , low v_*)
 - Possible due to cutting-edge facility and diagnostic capabilities
 - Will also improve integrated transport understanding to support operational goals
- Unique range of NSTX-U operational space (β, ν) complements tokamak and burning plasma research
 - Validating multiple drift wave and AE transport mechanisms in electron-loss dominated conditions
 - Improving theory & modeling for physics validation relevant to both ST & AT highperformance scenarios
- \Rightarrow Validating transport models over range of β & R/a will allow for integrated optimization (performance & engineering) of future devices

BACKUP SLIDES

Motivation: CAEs & GAEs candidates for core energy transport in NSTX

- CAEs & GAEs excited by Dopplershifted cyclotron resonance with beam ions
 [N. N. Gorelenkov, NF 2003]
- CAE & GAE activity correlates with enhanced \(\chi_e\) in core [D. Stutman, PRL 2009; K. Tritz, APS 2010 Invited Talk; N. A. Crocker, PPCF 2011]
 - T_e profile flattens as P_{NB} increases
 - $-\chi_e$ from TRANSP modeling
- Two leading hypotheses:

NSTX-U

 Stochastization of e[−] guiding center orbits enhance χ_e [NN Gorelenkov, NF 2010]

- Coupling to KAWs = missing transport channel \Rightarrow TRANSP gets χ_e wrong [Ya.I. Kolesnichenko, PRL 2010, E.V. Belova, PRL 2015]

Reflectometer array measures δn of CAEs & GAEs

- Reflectometer array sees global modes identified as CAEs & GAEs [N.A. Crocker, PPCF 2011]
- New analysis gives $\delta n/n_0$; in core:
 - $-CAE: \delta n/n_0 \sim 10^{-4} 10^{-3}$
 - $-GAE: \delta n/n_0 \sim 10^{-5} 10^{-4}$
- δn from measurements via "synthetic diagnostic"
- Reflectometer "signal-tonoise" improved via correlation with δb

χ_e from GAEs simulated for 6 MW H-mode 141398, t = 0.58 sec

- Anomalous core χ_e (~ 35 m²/s) in 6 MW H-mode
- *e*⁻ guiding center orbit spreading simulated by ORBIT => χ_e (see e.g. [NN Gorelenkov NF 2010])

- B-field from experiment (B_{T0} =0.45 T)

- at t = 0, isotropic thermal population (T_e = 1 keV), δ -function at $\Psi_N^{\frac{1}{2}} = 0.15$
- collisionless
- population spreads with time => D_e , $\chi_e = \frac{3}{2}D_e$
- 8 GAEs
 - $-\xi_{rms} \sim 0.4 \text{ mm} (\text{using } \xi \approx (\delta n/n_0)L_n)$
 - $-\omega = k_{||}V_A \Rightarrow |m| = 0 2$
 - poloidal+toroidal Fourier modes used

Nonlinear simulations of core MTM turbulence predict significant transport at high $\beta \& v$

- Large $\delta B/B \sim 10^{-3}$ leads to flutter transport ($\sim v_{\parallel} \cdot \delta B^2$) consistent w/ stochastic transport
 - In the core, driven by ∇T_{e} with time-dependent thermal force (e.g. Hassam, 1980) _
 - Requires collisionality \rightarrow **not explicitly driven by toroidal "bad-curvature"**
- Collisionality scaling ($\chi_{e,MTM} \sim v_e$) consistent with global confinement ($\tau_E \sim 1/v$)

NSTX MTM simulation

Predicted transport

At high β & <u>lower v</u>, KBM modes are predicted *in the core* \Rightarrow may set limit to NSTX-U confinement scaling

- KBM expected to set maximum ∇P
- Smooth transition from ITG/TEM (no hard onset) – distinct from conventional tokamaks
- Nonlinear simulations predict significant transport, strong compressional magnetic component (δB_{II}/B~10⁻³)

Global electrostatic simulations illustrate importance of nonlocal effects at finite- $\rho^* = \rho_i/a$

 Significant variation in predicted L-mode heat fluxes between local (GYRO) and non-local (GTS) electrostatic simulations (Ren, NF 2013, IAEA 2016)

 Global effects also important for high beta → development of global electromagnetic GK codes GTS, XGC1 is advancing (*PPPL theory*)

GTS simulations: Dissipative Trapped Electron Mode (DTEM) can give favorable v_* scaling in some regimes

- A unique "dissipative" TEM predicted to have similar collisionality scaling to MTM for some NSTX cases.
- A Drift Wave Kelvin-Helmholtz instability, driven by parallel shear flow, is also found to be important in some NSTX cases.
 - From global GTS electrostatic simulation

W.X. Wang et al., NF (2015), PoP (2015)

Microwave scattering used to detect high-k₁ (~mm) fluctuations in NSTX

ETG simulation

NSTX research has extended understanding the role of high-k turbulence on electron transport

- Measured high-k fluctuations increase with ∇T_e (R/L_{Te}>R/L_{Te,crit}) as expected for ETG turbulence
- Other measured trends are consistent with ETG theory, e.g. reduction of high-k scattering fluctuations with:
 - 1. Strongly reversed magnetic shear (Yuh, PRL 2011)
 - Simulations predict comparable suppression (Peterson, PoP 2012)
 - 2. Increasing density gradient (Ren, PRL 2011)
 - Simulations predict trend (Ren, PoP 2012, Guttenfelder NF, 2013, Ruiz-Ruiz PoP 2015)
 - 3. Sufficiently large E×B shear (Smith, PRL 2009)
 - Observed in ETG simulations (Roach, PPCF 2009; Guttenfelder, PoP 2011)
- BUT majority of nonlinear gyrokinetic ETG simulations predict Q_e too small to explain experiment

Priority NSTX-U operational & research T&T plans will focus on electron thermal transport

- Characterize H-mode confinement scaling at increased B_T , I_p , $P_{NBI} \rightarrow$ lower v_*
 - First operation milestone (R19-1); Multiple run days scheduled for FY16
 - Q: Will $B\tau_E \sim 1/v_*$ remain valid (ST vs. H98 scaling)?
 - Q: Will $\chi_i \approx \chi_{i,NC}$ remain? (Hints of $\chi_i > \chi_{i,NC}$ in lowest v_* NSTX discharges, Kaye NF 2013)
 - \Rightarrow How favorable are projections to next-step ST devices?
- Investigate parametric turbulence & transport dependencies and validate GK simulations and transport models
 - Exploit 2nd NBI, 3D coils and operational flexibility (see Battaglia talk), comprehensive turbulence measurements and updated transport models (e.g. TGLF)
 - Q: Does MTM set $1/v_*$ scaling and/or does DTEM (Wang, PoP 2015) play a role?
 - Q: Does KBM set ultimate τ_E limit at low v_* ?
 - Q: What role does ETG play?
 - \Rightarrow Can understanding be used to optimize transport characteristics?
- Measure CAE/GAE activity, mode frequencies and structure (BES, reflectometry)
 - Exploit 2nd NBI for GAE/CAE stabilization to study impact on $T_{e,0}$, χ_e (see Podesta EP talk)
 - Develop & test $\chi_{e,EP}$ model using ORBIT + measurement/HYM predictions
 - Q: What is role of GAE/CAE in setting T_{e,0}?

Long-term T&T research plans will use facility enhancements to support integrated operational goals

- Address electron particle transport in long-pulse H-modes
 - Exploit lithium and cryopump (as available) to modify sourcing (see boundary talks)
 - Q: How does density control/stationarity vary with transport regime? Does this influence operational goals?
- Investigate momentum transport using NBI modulation & 3D coils
 - Exploit 2nd NBI & long-pulse capability with new centerstack
 - Q: Do momentum pinch and residual stress play any significant role in setting rotation profile?
 - Follows previous work motivated by ITPA T&C (backup slides XX)
- Measure high-Z impurity transport using LBO
 - Investigate prior to any high-Z PFC coverage (see Jaworski talk)
 - Q: Will D_{imp}=D_{imp,NC} hold? What are implications for high-Z density profile?
- Use RF heating (HHFW) for flexible transport studies
 - Q: Can impurity transport be controlled with RF?
 - Q: Can role of drift wave vs. GAE/CAE on T_e be better understood?
- Study ρ_{*} scaling (requires density control)
 - Q: How important are finite-ρ* non-local effects? Can they be accurately modeled?

Short connection length → smaller average bad curvature

Short connection length → smaller average bad curvature

NSTX-U

• Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]

NSTX-U

34

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG

NSTX-U

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nm<u>R</u>²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv_⊥/dr)

Biglari, Diamond, Terry, PoFB (1990)

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nmR²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv_⊥/dr)
- ⇒Not expecting strong ES ITG/TEM instability (much higher thresholds)
- <u>BUT</u>
- High beta drives EM instabilities: microtearing modes (MTM) ~ β_e·∇T_e, kinetic ballooning modes (KBM) ~ α_{MHD}~q²∇P/B²
- Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability ~dv_{II}/dr