

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Wave heating and current drive

R. Perkins & N. Bertelli

NSTX-U PAC-39 PPPL, Princeton, NJ Tuesday, January 9, 2018



High-harmonic fast-wave (HHFW) heating: 6 MW source power with flexible phasing

- 30 MHz: well above ion cyclotron frequency
 - Landau damps on electrons
 - Can be absorbed by beamions
- 12-strap phased array
 - Power-deposition control via phasing
- Complementary to NBI
 - Injects heat without particle or momentum input

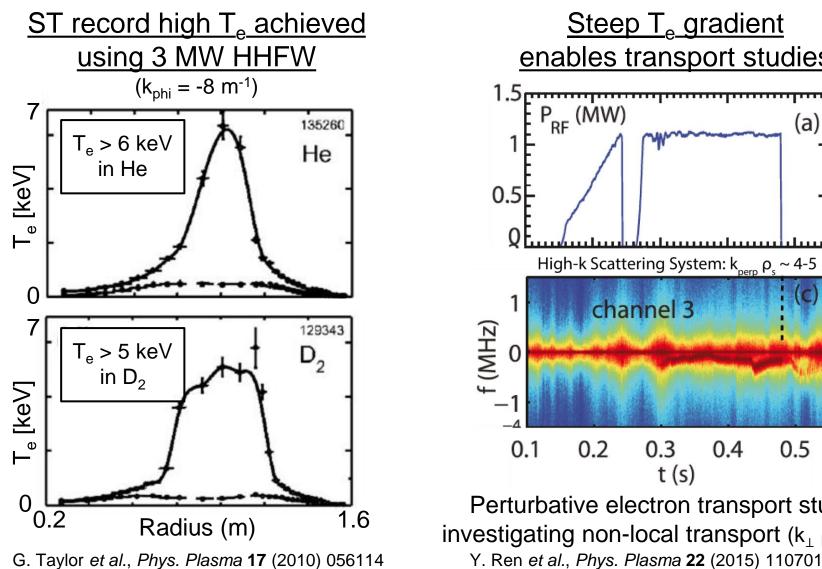
12-Strap HHFW antenna at NSTX-U midplane

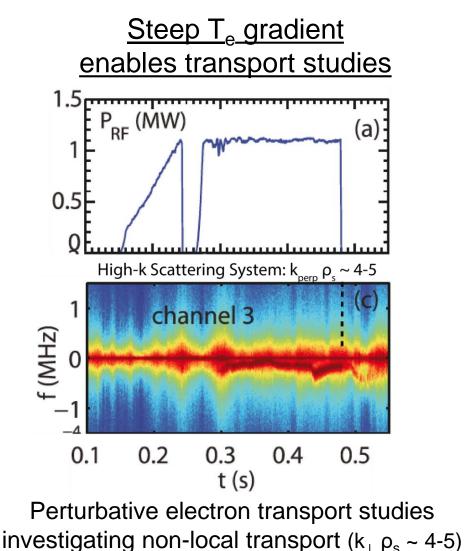
- Only ICRF on toroidal experiment in USA
- Unique system among STs

HHFW is envisioned as a tool that diversifies and enhances the following NSTX-U research:

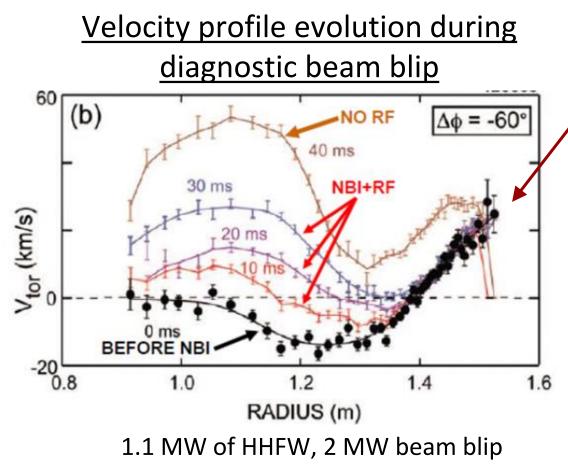
- Transport studies
- Rotation effects on stability
- Interactions with fast-ion-driven modes
- Low-current non-inductive scenarios
- High-Z impurity transport
- Solenoid-free start-up

Near- &


mid-

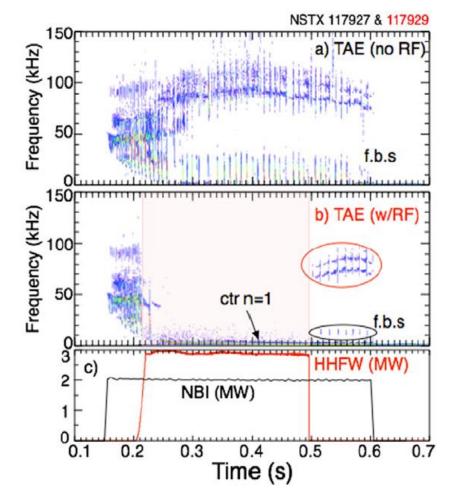

term

Long-


term

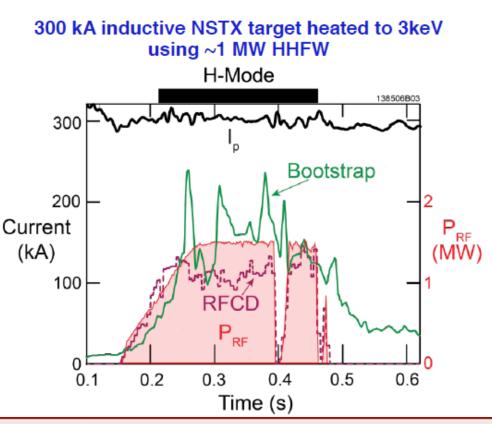
HHFW can support the investigation of ST confinement via significant e⁻ heating [T&T-TSG]

HHFW can strongly change rotation profile; possible tool for transport & stability [T&T- & MS-TSGs]

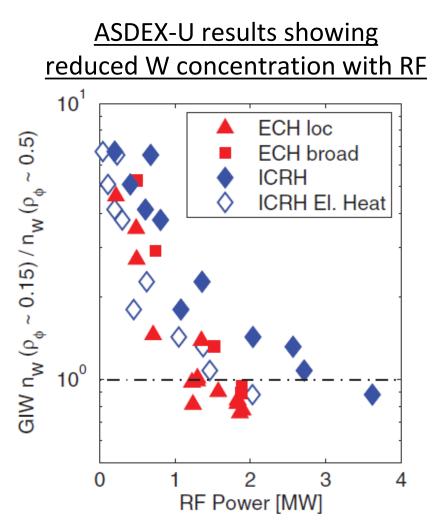

HHFW influences rotation profile

- Clamps edge rotation to no-NBI level
- HHFW can produce lowtorque H-modes
 - Study e⁻-heated, low-torque discharges for ITER
 - Useful for L-H transition studies
 - Important topic ITER
 - Compare to JET results
 - Study NTV offset rotation
 - Would benefit from x-ray crystal spectrometer (MIT)
- G. Taylor et al., Phys. Plasma 17 (2010) 056114

NSTX-U


HHFW can suppress EP/AE activity [EP-TSG

- HHFW can significantly modify the fast ion phase space
 - D. Liu *et al.*, *Plasma Phys. Control. Fusion* 52 (2010) 025006
- Significant interaction between HHFW and fast-ion driven modes
 - Possible suppression/excitation of EP/AE modes
 - ITER relevant:
 - ITER will have (super-Alfvénic) alpha particle & ICRF
 - NSTX-U beam injection is super-Alfvénic


E. Fredrickson *et al., Nucl. Fusion* **55** (2014) 013012 free ramp-up & high bootstrap fraction [SSR- & ASC-TSGs]

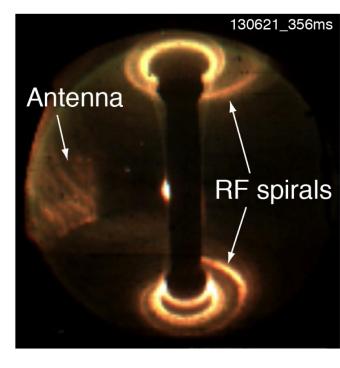
- HHFW can potentially bridge the gap between a solenoidfree start-up plasma and NBI
 - Bring cold low-current plasma up to suitable target for NBI
- NEAR TERM: target lowcurrent (300 KA) Ohmic flattop
- MID/LONG TERM: target actual ramp-up phase
- See following Non-Inductive Start-up and Ramp-Up talk

Central RF heating mitigates high Z impurity accumulation in the plasma core [ASC- & M&PFCs-TSGs]

- High-Z impurity accumulation is a major issue for high-Z walls
 - STs can explore neoclassical vs turbulent effects
- NEAR TERM: HHFW can contribute in near term (before high-Z tiles)
- LONG TERM: HHFW may be an operational need if we transitior to a high-Z wall
 - Significant recommendation from PAC-37

C. Angioni et al., Nucl. Fusion 56 (2017) 056015

Charge Question 1: Research in 2016-17 in support of improved HHFW operation


- Modeling of SOL losses of HHFW power
 - AORSA simulations including SOL extended to different aspect ratios
 - N. Bertelli *et al., Nucl. Fusion* 56 (2016) 083004
 - FW2D incorporates realistic antenna & limiter geometry
 - E.-H. Kim et al., EPJ Web of Conferences **157** (2017) 02005
 - Cylindrical model calculates modes with enhanced fields in edge
 - R. J. Perkins *et al., Nucl. Fusion* **57** (2017) 116062
- Modeling of HHFW absorption by different ions
 - Self-consistent TORIC & NUBEAM coupling
 - N. Bertelli *et al.,* Nucl. Fusion **57** (2017) 056035
 - Impact of 2nd harmonic H absorption ~1 T
 - New heating scenario
- Collaborations to study far-field rectification
 - Experiments at LAPD on RF rectification and vessel-wide current paths
 - Analysis of EAST ICRF experiment: far vs near field rectification

Prospect of HHFW in NSTX-U (2020-25)

- Characterize SOL losses at higher toroidal field
 - Expected to improve based on operation experience & modeling
 - Quantify losses so users know power input to core
- Study HHFW absorption profiles
 - Assess absorption by 2nd beam ion vs 1st beam
 - Characterize e⁻ vs beam-ion absorption
 - Predicted to vary with antenna phases & Te/Ti ratio
 - Impact of H species on HHFW performance
- Continue collaboration with RF SciDAC research
 - RF core physics: TORIC + non-Maxw. effects + NUBEAM (w/ TRANSP group)
 - Possible synergy with Helicon research

Charge questions 2 & 3: Uniqueness of NSTX HHFW in view of global RF Research

- SOL losses: unique physics issues
 - Modeling of enhanced RF fields in SOL
 - Far-field rectification: dissipating wave power
- Impact of field misalignment of antenna at high pitch
 - Compare to results obtained from C-Mod fieldaligned antenna
- HHFW on NSTX-U is a unique feature for spherical tokamaks
 - Highest power & flexible phasing
 - TST-II: 21 MHz HHFW system up to 30 kW
 - Globus-M: ICRH (~7-9 MHz), 2-strap antenna, 0.5 MW
- Will be the only ICRF system on a toroidal experiment in US
 - DIII-D 476 MHz helicon system: lower-hybrid range of frequencies

Summary

- HHFW system can provide up to 4 MW couple power
 Complementary to NBI
- HHFW on NSTX-U would support and enhance a broad spectrum of applications:
 - High core T_e for transport studies
 - Interaction between HHFW & NBI
 - Heating of low-l_p targets for subsequent NBI ramp-up
 - Effect on rotation profile
 - High-Z impurity expulsion
- Theory Partnership through RF SciDAC project

THANK YOU

PAC meeting, Wave heating and current drive, R. Perkins, Jan 9 2018

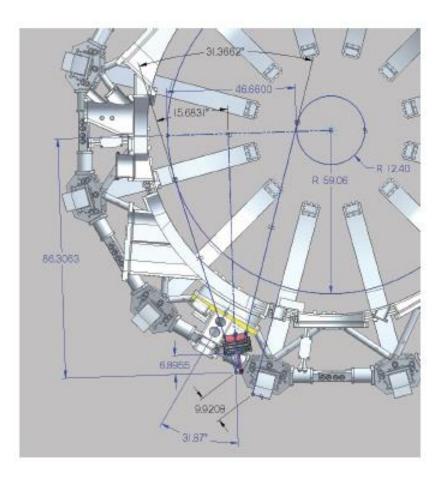
NSTX-U WH&CD research in line with ITPA activities 2017, 2015 PMI & Integrated simulations workshops

• ITPA Integrated Operation Scenarios:

IOS-5.1 ICRH impurity generation

& 2015 PMI workshop:

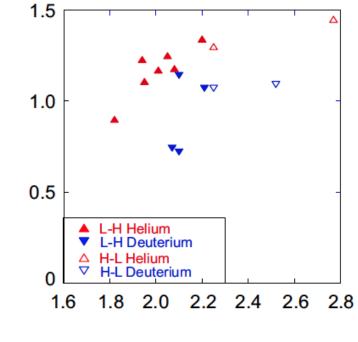
[PRD-C] Understand, develop and demonstrate innovative boundary plasma solutions for main chamber wall components, including tools for controllable sustained operation, sufficient for extrapolation to steady-state reactor application


- Interaction between HHFW and SOL plasma: HHFW SOL losses, antenna impurity sources
- 2015 Integrated simulations workshop: [PRD-Boundary-4] Integrate RF antenna/plasma-absorption simulations with SOL/pedestal plasma transport simulations, filling a notable gap in present capability
 - collaboration with the new RF SciDAC project on this task
- ITPA ENERGETIC PARTICLES PHYSICS:

EP-12 Identification of AE control actuators and preliminary assessment for ITER

- Interaction HHFW + NBI: modification of fast ions phase space by RF
- suppression of AE activity by HHFW

Proposed x-ray crystal spectrometer (MIT)


- Obtains rotation & T_i profiles without NBI "blips"
 - Uses argon seeding for Doppler measurements
 - Useful for HHFW-only discharges for which CHERS is unavailable without beam blips
- Conceptual design review completed
 - Covered redesign of port flange, spectrometer layout, test of analysis
- Not included in Recovery scope
 - Could be near-term capability if supported

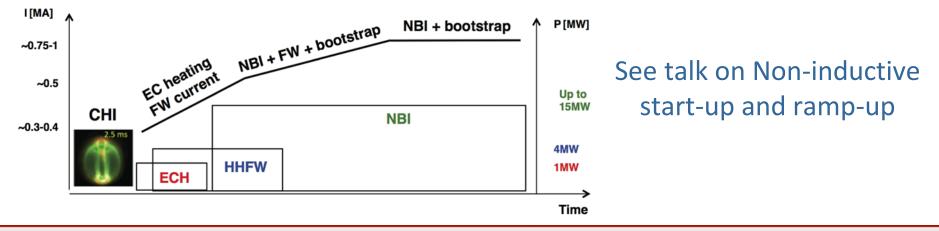
Isotope-dependence in L-H transition studies are enabled by HHFW

- HHFW advantages for L-H transition studies
 - PRF,net + POH dW/dt (MW) HHFW can heat discharges without momentum input
 - HHFW heats He discharge w/o injecting D
 - HHFW power level is arbitrary
 - NBI "discretized" to 2 MW steps
- Important for ITER
 - Marginal power for L-H transition in hydrogen phase?
 - Added ST data point to ITPA studies
 - Will compare future NSTX-U results to recent & upcoming results from

 \overline{n} (10¹⁹ m⁻³)

S. Kaye et al., Nucl. Fusion 51 (2011) 113019

NSTX-U


JET

Developments in RF

- SOL losses determine to be field-aligned and occurring across entire width of SOL
- MIT field-aligned antenna demonstrates reduced impurity production and variations in reactive loading
- RF rectification shown to be a strong candidate mechanism for dissipating HHFW power
- Full-wave simulations show strong increase in RF amplitude in SOL when SOL density exceeds cutoff
- Cylindrical analytic model shows existence of modes with large edge amplitudes when a half-wavelength structure fits into edge region
- Self-consistent full-wave modeling and particle distribution function evolution

EC/EBW Motivations for NSTX-U

- 28 GHz gyrotron system can heat CHI plasma to enable HHFW heating and current drive, ramp-up to higher I_P with NBI heating
- 28 GHz gyrotron could also be used for EC/EBW plasma formation, H-mode heating and current drive (with launcher upgrade)
- Performed TRANSP simulations combining all heating schemes: EC+HHFW+NBI
 - F. Poli et al, Nucl. Fusion **55** (2015) 123011

