National Spherical Torus eXperiment Upgrade

Liquid metal PFC program for NSTX-U

NSTX-U PAC40 – Sept. 11, 2019

Rajesh Maingi

(Partial response to Charge #3 and comments in the last PAC report)

Substantial excitement and opportunities with an accelerated liquid metal PFC program in NSTX-U

- Liquid metal PFCs are a PPPL strategic initiative
 - PPPL effort engages multiple departments: PS&T, I&T, NSTX-U
- This talk motivates near-term deployment concepts, but the elements are presently unfunded
- Motivation and recent developments
 - New FES domestic liquid metal PFC development program: FY20-FY22
- Near term acceleration options and next step vision
 - 'Phase 1' options: pre-filled Li plugs in high-Z tiles, flowing Li limiters
 - 'Phase 2' vision: all high-Z tiles with flowing Li divertor modules
- Summary

Liquid metal plasma-facing components should be vigorously pursued as an alternative to solid PFCs

- High-Z solids are the leading PFC design choice, but have serious challenges for long-pulse reactors
 - Performance under intense PMI and neutron load
- Liquid metal PFCs offer the promise of self-healing PFCs that do not suffer from lifetime erosion & re-constitution limits
 - Remove surface heat load requirements on solid PFCs
 - Remove requirement that solid PFCs handle simultaneously PMI and neutrons
 - Aim to remove microscopic PMI-generated debris in LM flow
 - Li PFCs provide access to high $\tau_{\rm E}$, one path to a compact fusion pilot plant

NSTX-U

NSTX-U PAC-40: Liquid Metal PFCs (Maingi)

R. Maingi, Nucl. Fusion 52 (2012) 083001 3

Developments since PAC-39 (1/18)

- DoE/SC Phase 2 Assessment of NSTX-U Recovery Plans strongly endorsed the liquid metal PFC program for NSTX-U (3/18)
- Transformative potential of LM PFCs identified in reports (2018 FESAC TEC, 2019 NAS Fusion Strategy)
- DoE LM Fusion Energy Systems Study (FESS- 2/19) identified general R&D needs and those specific to liquid metals of interest: Li, Sn, Sn-Li
 - Follow-on FES LM PFC design program launched (FY20-22, PPPL lead)
- PPPL interest centers on using flowing liquid Li, but leaving flow speed as a design choice
 - Slow flow (cm/sec): capillary porous system or vapor box
 - Fast flow (m/sec): LM flow augmented by j x B drive

Elements of PPPL liquid metal PFC program

A LM PFC Development Program has been initiated, following the FESS LM PFC study

- What: three-year program (\$1M/year) toward engineering concept design for LM PFCs for reactors [PPPL, ORNL, UIUC, UCLA]
- Why: because it is uncertain that solid PFCs can survive plasma-material interactions at reactor scale, and LMs may provide a solution
- **Goal**: <u>Develop and evaluate a LM PFC concept for an FNSF / compact</u> <u>fusion pilot plant</u> (CFPP) core plasma via
 - 1. Engineering design and plasma interface calculations
 - 2. Appropriate lab experiments (single-effect and prototypical flowing LM) to simulate the concept and answer questions
- NSTX-U Relevance: new designs applicable to a CFPP could be scaled and tested in NSTX-U if resources become available
 - Path to close gaps for CFPP plasma exhaust design

Down selections for the initial LM PFC program

- Engineering concept design for a <u>flowing liquid lithium</u> <u>PFC for the divertor</u> only
 - Flowing liquid walls are a future consideration
- First option: low temperature below the strongly evaporative limit (expand to higher temp. in years 2-3)

• Evaluate several flow rates: slow, medium and fast

Science and Engineering Open Questions

- What are the trade-offs for slow-flow (< 10 cm/s) and fast-flow (> 1 m/s) concepts? Is there an optimum intermediate flow rate? What are safety implication of each? How are they integrated into the plant?
- How can we insure maximum wetting on the substrate? How can we avoid dryout? How can we minimize droplets?
- What reactor-relevant design features can be simulated by an openchannel chute experiment?
- Can we remove hydrogen from the flowing Li sufficiently fast? Can we pump He?

Plan, FY 20

- Concept Development: Engineering Concept Design & Plasma Interface for <u>flowing liquid Li divertor</u> PFCs for future devices (FNSF/CFPP) – 675k [ORNL, PPPL, UCLA, UIUC]
 - Three flow rates: slow, medium, fast open questions as a function of flow rate?
 - PFC surface temperatures for low evaporative solutions: T < 400-450° C
 - > 2D SOL/divertor and PMI near surface modeling a critical part
- Lab Experiments: Single effect and Prototypical Experiments 325k
 - Experiments on wetting, continuous flow, dryout, texturing [UIUC]
 - LMX experiments to determine range of flow rates and dependence on B, thickness, heating [PPPL]
 - Liquid Metal Embrittlement [ORNL]
- 3 year goal: <u>develop design and identify design trade-offs for FNSF/CPP</u> consistent with LM MHD, substrate thermo-mechanics and CFD, plasma interface, and accessible experimental validations

Liquid Metal Experiment: LM Flow Experiment at PPPL

LMX is a chute flowing experiment, using GaInSn (safe, can be open to air or water)

- B_{max} = 0.33 T, uniform, perpendicular to flow
- Chute width, length = 10.9 cm, 70 cm
- LM thickness ~ 2 cm, v ~ 1-3 m/s
- Electrodes for driving currents
- Piping, chute, other parts are plastic
- Low temperature (25 C)

Year 1 experiments

NSTX-U

- LM MHD flow vs simulations
- Heating/mixing vs simulations
- Nozzle size/flow speed vs simulations
- Detailed examination of upgrades/parameter space accessible/what is prototypical of concept design

M. Hvasta et al., *Nucl. Fusion* **58** (2018) 016022 M. Modestov et al., *Nucl. Fusion* **58** (2018) 016009

Elements of PPPL liquid metal PFC program

The need for integrated solutions, coupled with NSTX & PPPL expertise, motivates liquid metal PFC mission in NSTX-U

- Li science and technology developed in NSTX & PPPL
 - NSTX LLD: Diagnostics, Theory, and Surface Science
 - CDX-U, LTX, LTX-β, collaborations
- NSTX-U can access $q_{\perp} \leq 30$ MW/m²
 - Full heating power: P/R~20

Outline

Motivation and Goals

Near term acceleration options and long term vision

- Phase 1 Option: pre-filled lithium plugs in high-z tiles
- Phase 1 Option: upgraded flowing liquid lithium limiters
- Phase 2 Vision: all high-Z tiles with flowing Li divertor modules
- Summary

Two Phase 1 liquid Li options for deployment in NSTX-U in 2024

- Introduce Li atoms into divertor for particle and power exhaust
 - Pre-filled lithium plugs embedded in a high-Z substrate
 - Previously reviewed step (CDR) on path toward liquid metals in NSTX
- Use flowing liquid lithium system for power and particle exhaust
 - First step: limiter inserted in midplane
 - Knowledge from three versions tested in EAST enables fast NSTX-U deployment

Pre-filled Li plugs in high-Z tiles were a previously reviewed step toward liquid metal PFCs

- Pre-filled targets build on high-Z, high-heat flux designs
- Use pre-heating to bring tiles to 200-300
 °C, and strike point incidence to increase temperature for high evaporation rates
 - How to avoid surface contamination?
- Detachment physics: can Li evaporated into SOL and/or private flux region dissipate power?
 - Connect to simple Li vapor box concept
- Slow progress since 1/18 due to staff loss of critical expertise (M. Jaworski)

2015-16 NSTX-U High-Z Design

NSTX-U

Pre-filled Li plugs in high-Z tiles aim to provide Li atoms into the divertor in NSTX-U

- Detachment physics: can Li evaporated into SOL and/or private flux region dissipate power?
 - Low temperature: pumping?
 - High temperature: power dissipation and detachment control?
 - Informing Li vapor box designs for NSTX-U in Phase 2
 - Can HeGDC clean surface contamination?
- Use strike point incidence to control local temperature
 - Capillary forces cause Li to wick up

Pre-filled Li plugs in high-Z tiles aim to introduce Li atoms into the divertor

NSTX-U

NSTX-U PAC-40: Liquid Metal PFCs (Maingi) P. Rindt, ISLA 2017, FED 2016

The science and technology of flowing liquid lithium limiters has been advanced via US-PRC PMI collaboration on EAST

- Three generations of midplane liquid lithium limiters tested in EAST
 - Prototype SS plate tested in HT-7
 - Gen. 1 (12/2014) tested in EAST
 - Gen. 2 (12/2016) tested in EAST
 - Gen. 3 (8/2018) tested at UI-UC and PPPL and then EAST
 - Increasing P_{aux}, W_{MHD}

Generation	Heat Sink	SS thickness	JxB	Max. P _{aux}	Max. q_{exh}	Max. W _{MHD}
		(mm)	pumps	(MW)	(MW/m^2)	(kJ)
1	Cu + SS	0.1	1	1.9	3.5	120
2	Cu + SS	0.5	2	4.5	4	170
3	Mo (TZM)	NA	2	8.3	TBD	280

J. Ren, Rev. Sci. Instrum. **86** (2015) 023504 G.Z. Zuo, Nucl. Fusion **57** (2017) 046017 J.S. Hu, Nucl. Fusion **56** (2016) 046011 R. Maingi, IAEA FEC 2018 paper FIP/3-5Ra

NSTX-U

EAST: 3rd generation flowing liquid Li limiter fabricated; shipped to EAST 6/18 and exposed to plasma 8/18

- Made of Mo for Li compatibility
 - One plate sent to EAST, second plate sent to UI-UC for testing in HIDRA
 - Extensive heater testing at UI-UC
 - Stainless steel distributor and collector brazed onto plate
- Experiment in 8/18 exposed FLiLi limiter to plasmas with P_{aux}=8.3 MW
 @ 3cm from separatrix
 - Reduced recycling, slightly higher stored energy, low or no sputtering, ELM mitigation
 - Future versions: 3D printed W PFC, limiter and/or divertor sector(s)?

R. Maingi, IAEA FEC 2018 paper FIP/3-5Ra

Flowing liquid Li midplane limiters, based on FLiLi technology developed collaboratively on EAST, can be designed for NSTX-U

- Potential upgrades technology that enables science
 - Increase flow rate from cm/s to m/s with e.g. j x B forces or LM jets to increase convective heat removal
 - Increase range of temperatures up to strong evaporation limits (650 °C) to augment power dissipation and detachment
 - Increase range of Li film thickness from 0.1mm to 1 cm for improved protection of substrate
- Can we restart flow after stopping?
- Can we improve wetting and reduce creep with texturing?
- Can we extend these concepts to a flowing divertor system?

Phase 2: Long term vision and directions of LM program in NSTX-U

- NSTX-U would transition to all high-Z PFCS
 - Avoid carbon, due to formation of compounds that contaminate Li (LTX, NSTX LLD experience)
 - Aiming for very high τ_{E} , flat temperature profiles as observed in LTX
 - Coming LTX-β results will highlight importance of liquid vs solid walls
- High heat flux regions would have flowing liquid lithium module(s) for power exhaust
 - Multiple concepts can be tested over the years
- Low heat flux regions would have pre-filled tiles or evaporated coatings for particle control
 - Cryopump could be installed as a future option for a detailed comparison with Li pumping
- The new FES LM PFC Development Program should lead to natural collaborations during design and deployment

Li vapor box (LVB) divertor concept

- Provide a localized cloud of • Li vapor <u>away from main plasma</u>
 - Evaporation at ~ 700° C

NSTX-U

- Condensation at ~ 400° C (determines DT pumping or not)
- Returns liquid lithium via • capillary porous material ~ 1 kg/s (Fast flow systems require $\sim 1 \text{ t/s}$)
- An inside-out heat pipe ٠ with the heat source inside the pipe!
- Vapor gradient \Rightarrow resilience to variable heat flux ٠

NSTX-U PAC-40: Liquid Metal PFCs (Maingi)

Cannot be done with gaseous impurities

- R. Goldston, Nucl. Mater. Energy 12 (2017) 118
- E. Emdee, Nucl. Mater. Energy 19 (2019) 244

LVB Proof-of-Principle Experiment at MAGNUM-PSI (LDRD)

- Demonstrate volumetric dissipation in lithium vapor
 - Target heat flux should drop by large factor
 - Power should be distributed ~ evenly around box
- Demonstrate robustness to varying plasma power
 - Beam should move into densest box by a factor of
 ~ 2 for 2x higher power
 - Is it lithium pressure or lithium influx that counts?
- Answer key scientific questions:
 - How is power dissipated?
 - How is momentum dissipated?
 - Requires substantial diagnosis
- New LDRD supports postdoc to participate in LVB design and experiments

Target Staging Area 23

NSTX-U

Liquid lithium experiments on NSTX-U can begin as early as 2024

- Phase 1 requires immediate design effort
 - Would need FES agreement to deploy a few NSTX-U Recovery engineers and designers (in 2020) for these upgrades
- Preparation for phase 2 vision by 2026-2027 needs to commence
 - NSTX-U engineers and designers also needed for qualifying high-Z tile designs on divertor and wall
 - The FES LM PFC development program will naturally provide CFPP relevant designs, which require engineering and scaling to NSTX-U, as well providing a pool of engaged collaborators

US PMI workshop 2015 and FESAC TEC 2018 reports highlighted the importance of developing LM PFCs

- PMI Workshop: Multiple priority research directions (PRDs) highlight need to advance concepts (including liquids):
 - PRD-A: limits on power and particle handling, including **liquids**
 - PRD-B: demonstrate dissipative divertor solutions, including **liquids**
 - PRD-C: develop solutions for main chamber components and tools for sustained operation
 - PRD-D: science of evolving materials, including liquids
 - PRD-E: understand impact of **materials** on core performance
- FESAC TEC: identified both slow flow and fast flow LM systems as transformative enabling capabilities (TEC)
 - Slow flow and hybrid solid-liquid systems described in advanced material and manufacturing chapter
 - Fast flow LM systems described in a stand-alone chapter

Goal: deploy flowing LM PFCs in a high power plasma device that are applicable to compact fusion pilot plants

- Design options for flowing LM PFC:
 - What LM should be used? *Near-term focus on Li, but interest in Sn-Li and Sn*
 - LM PFC designs can provide particle exhaust, power exhaust, or both
 - Particle exhaust requires Li < 300-400 °C; a fast-flow system (m/s) or a slow-flow system (cm/s), restricted to low heat flux regions, can do this
 - Power exhaust: either a fast-flow system, or a slow-flow system at high operating temperature and vapor pressure can do this
 - Both power and particle exhaust: a fast-flow system can do this; a high temp. slowflow system may get pumping from low heat flux regions
 - > PPPL program has parallel efforts on slow- and fast-flow Li systems

*** Fast-flow systems augment the normal conductive power exhaust with convection, but fastflow systems have more technical challenges (MHD drag, stable flow) PPPL developing science and technology of liquid-metal targets for fusion devices: reactor-relevant concepts

- NSTX demonstrated stable liquid lithium divertor target
 - Stability predicted for structured substrates
- Heat-flux and cooling results in novel configurations: continuous vapor shielding of targets
- Impact: candidate reactor concept (T-("T-tube") shown below

Mo caps on pre-filled Li plugs would enable survival during bakeout

- Removable, macroscopic, metal covers and foils previously used but requires extraction strategy
- Thin metal foil can be removed insitu by plasma bombardment
 - May require bias-able targets to enhance sputter yield
 - E.g. 1e17 m⁻³, 200V bias He->Mo: 1000s (~15min) erodes ~200nm
- Concept tested at UIUC (summer 2016) with favorable results
 - Bake-out flux and temperature simulated with H2O+CO2 bubbler – NO REACTION
 - Spectroscopy indicated highest Li/O ratio with capped layer

Power dissipation of Li pre-filled targets evaluated in MAGUM-PSI linear plasma device

- Li-target tested based on pre-filled concept for NSTX tested in MAGNUM-PSI linear plasma device
 - Temperature clamping exhibited
 - Similar behavior for Liquid Sn target
 - Supports idea of power exhaust via Li vapor
- Lithium vapor box 0D calculation indicates high power exhaust potential for DEMO

Power dissipation science via lithium vapor boxes being evaluated for FNSF

Flowing Liquid Metal Torus (FLIT)

- Test axisymmetric liquid metal flows in toroidal fields in realistic B to show feasibility of fast LM divertor concept for NSTX-U at high heat fluxes
 - Present: LDRD for design study, construction is unfunded
- Proof of principle R&D at PPPL:
 - Develop the <u>engineering</u> for fast flow system (jxB pumps, nozzles jets/open surface, etc)
 - Use Gallinstan (Ga, In, Sn); No plasma in FLIT

Axisymmetric free surface flow

J x B pumping to highfield side nozzle