Experimental Research Operations: Status and Plans

M.G. Bell **Princeton Plasma Physics Laboratory** presented for the **NSTX Experimental Research Operations Division NSTX PAC-10** February 8, 2001 Los Alamos NOVA PHOTONICS. INC. ADSEC | Department of Energ

Topics

- Changes in device capabilities (upgrades by Engineering Division)
- Diagnostic status
- Diagnostic upgrades and development FY'01-03
- Plasma control
- Boundary physics and wall interactions
- HHFW status & plans will be described in talk by J.R. Wilson

X —

Analysis Complete for Increasing Current to 1.5MA

- Recent experiments demonstrated benefits of higher I_p for NB heating
 - Confinement improvement
 - Avoidance of NTMs (lower β_P)
- We have capability for higher I_p for short pulses
 - Resistive and inductive flux consumption sufficiently small, *if we*
 - Apply some auxiliary heating (NB, HHFW) during I_p rampup
- Engineering calculated acceptable stresses for $I_p = 1.5MA$
 - Disruption dl_p/dt and halo current peaking lower than design basis
 - Will limit $I_p \times I_{TF}$ product to original 71 × 10⁹ A² *i.e.* B_T(0.85m) = 0.4 T
 - q_{edge} similar to 1.07MA @ 0.3T already achieved
- Completed scale-factor changes to magnetic diagnostics (Dec-00)

Bipolar Supplies for PF1a Coils

- PF1a upper/lower coils used for
 - control of triangularity δ
 - providing PF null in absorber region during CHI
 - Original 15kA unipolar supplies connected to increase δ , but
 - Low inductance of PF1a coils also led to large current ripple, reducing their usefulness
- Duration of CHI plasmas and achievement of conditions for flux closure have been limited by arcs in absorber region
 - bipolar PF1a can help maintain field null in absorber
- Now installing, to be ready in February,
 - two +15/-5 kA supplies and
 - external inductors for factor 10 ripple reduction

NB Upgrades

- NB group implementing pulse-width modulation of sources to provide
 - "blips" for fast-ion doping
 - "notches" for background measurement
 - "fractional" sources for power scans
- Analysis complete for operating NB sources at higher voltage (100kV)
 - Possibility for increasing NB power to >6MW if warranted

- \

High-Temperature Bakeout

- Current bakeout capability after major vacuum vents:
 - Center column and inboard tiles to ~300°C
 - Outer vacuum vessel to 100°C
 - PFCs on outboard side to ~150°C
- Plasma performance has shown slow secular improvement after each vacuum vent
 - Higher temperature bakeout should accelerate improvement
- Now implementing a pressurized helium system
 - 350°C on PFCs, 150°C on outer vacuum vessel
- Plan for availability in July

Planned Diagnostics Can Address Research Goals

- FESAC/IPPA 5-year objective for ST:
 - Assess high-beta stability, confinement, self-consistent high-bootstrap operation, ... divertor heat flux
- NRC FuSAC Recommendation:
 - Advance understanding of key science issues in concerted efforts
 - Identify and implement diagnostic tools required to compare with theory ...
- **Stability**: profiles of j, p_{tot}, p_{fast}; mode identification (real-time for control)
- Confinement: profiles of n_e, n_{imp}, Z_{eff}, T_e, T_i, P_{rad}, v_φ, E_r, fluctuations, with resolution for internal & edge transport barriers
- Divertor: heat fluxes and profiles, local P_{rad}, particle sources & fluxes, erosion/redeposition
- Advanced control: magnetics, real-time equilibrium (incl. CHI), fueling, current drive, local heating

 \sqrt{STX} –

Diagnostic Coverage is Significantly Improving

- * Diagnostics in operation 12/00
- Diagnostics in commissioning phase 12/00

Confinement Studies

- * Magnetics for equilibrium reconstruction
- * Diamagnetic flux measurement
- * Thomson scattering (10 ch., 30Hz)
- * 2 mm interferometer (single chord)
- * VB detector (single chord)
- * Midplane tangential bolometer array
- * X-ray crystal spectrometer
- * X-ray pulse height analyzer
- * Edge reflectometer: n_e profile [UCLA]
- CHERS: T_i and v_{ϕ} (17 ch.)
- Electron Bernstein wave radiometer
- Neutral particle analyzer (central chord)
- FIReTIP interf'r/polarimeter (2 ch.) [UCD]

MHD/Fluctuations

- * High-n and high-frequency Mirnov arrays
- * Soft x-ray arrays (3) [JHU]
- * Edge reflectometer [UCLA]
- * Visible edge fluctuation imaging [LANL]
- * Fast ion loss probe (non-resolving)

Plasma Monitoring

- * Fast visible camera [LANL]
- VIPS-1: Visible survey spectrometer with reticon array
- * Fission chamber neutron measurement
- * Fast neutron measurement
- * 1-D CCD camera H_{α} monitor
- * Visible filterscopes [ORNL]
- * Scrape-off layer reflectometer [ORNL]
- * Wall coupon analysis [SNL]
- * GRITS: VUV spectrometer [JHU]
- IR camera
- VIPS-2: Visible survey spectrometer with CCD detector
- SPRED: UV spectrometer with CCD detector

Diagnostic Upgrades in FY'01

- Locked mode coils (6) installed, ready for commissioning
- B_{pol} measurements \Rightarrow more robust coils on center stack
- Thomson scattering (30Hz, 10 ch.) \Rightarrow 60Hz (May), 20 ch. (Sep)
- EBW radiometer ⇒ 2nd channel
- IR survey (currently prototyping) ⇒ additional cameras and views
- Fast ion losses \Rightarrow probe with E, pitch angle resolution
- CHERS \Rightarrow ~75 ch. in conjunction with MSE collection optics
- Neutral particle analyzer \Rightarrow horizontal, vertical scan
- FIReTIP ⇒ install additional channels [UCD]
- Edge reflectometer ⇒ radial correlation measurement [UCLA] (May)
- MSE (CIF) polarimeter 2 ch. [Nova]
- Fast scanning edge probe [UCSD]
- Natural diamond neutral particle analyzer
- Prototype divertor bolometer
- Tangential x-ray camera (equilibrium constraint, slow) [with U. Wisc.]
- Resolve diagnostic grounding issues (with Engineering Division)

Diagnostic Development FY'01

- X-ray imaging diagnostics
 - Fast (MHz) tangential x-ray camera [PSI]
 - Assessing upgrades for poloidal views [JHU]
 - increase detector density
 - additional/alternate views
 - filtered array
- Divertor imaging with fast visible camera [Hiroshima U.]
- Conceptual study for divertor bolometry initiated at Research Forum
 - Absolutely calibrated 2D or high resolution, fast 1D or 2D system
- Laser Induced Fluorescence MSE polarimeter [Nova]
 - discussed in talk by F. Levinton

Diagnostic Upgrades - FY'02 Base Funding

- Thomson scattering \Rightarrow 90Hz, 30 ch.
- FIReTIP \Rightarrow 7 channels [UCD]
- MSE (CIF) polarimeter \Rightarrow 10 ch. [Nova]
- Poloidal x-ray arrays \Rightarrow upgrade spatial resolution, views
- Mirnov coils \Rightarrow additional locations and DA upgrade
- VB measurement ⇒ array (supplement MPTS detectors)
- Design of "Poloidal CHERS" for v_{pol} profile
- "Dynamo" (CHI) probe for reciprocating drive
- Divertor bolometer system
- Fast tangential x-ray camera
- Design of interface(s) for new fluctuation diagnostics
 - Discussions at Research Forum and Turbulence Diagnostics Workshop

Diagnostic Upgrades - FY'02 Incremental Funding

- IR cameras ⇒ high speed camera with image transport
- Poloidal CHERS installation
- *"Laser blowoff" impurity doping for transport studies*
- Divertor Thomson scattering system, Stage I
- Imaging x-ray crystal spectrometer $[T_e(R), T_i(R)]$
- MSE (LIF) polarimeter, preliminary [Nova]
- Fueling system upgrade (FY'02 Incremental Funding)
 - Compact cryogenic pellet injector, inside launch [ORNL]

Diagnostic Upgrades - FY'03 Base Funding

- Thomson scattering \Rightarrow 35 ch.
- Fixed divertor Langmuir probes ⇒ *new locations and instrumentation*
- Poloidal CHERS installation (if not funded in FY'02 Incremental)
- Fluctuation diagnostic(s)
- Scanning divertor Langmuir probe
- MSE (LIF) polarimeter [Nova]
- Divertor imaging with fast visible camera [Hiroshima U.]
- Support of new diagnostics will be a significant challenge in FY'03

 \sqrt{STX} -

Diagnostic Upgrades - FY'03 Incremental Funding

- Thomson scattering \Rightarrow 40 ch.
- Divertor Thomson scattering system \Rightarrow *Stage II (if previously funded)*
- Edge neutral-He spectroscopy
 - temperatures, densities and flow in edge and scrape off
- Absolute Lyman- α XUV diode array for divertor region

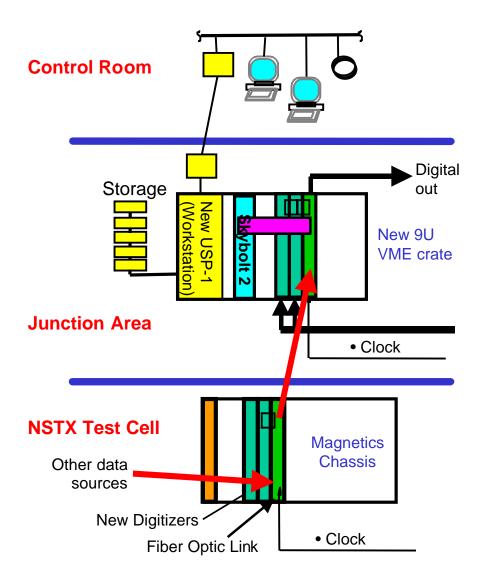
\$7X -

Status of Real-Time Control System

- New 4-processor computer installed and being tested with
 - Same inputs as present system
 - Existing control software
 - Initially operate in parallel and then phase into use during next run
- DA hardware received and tested except fast interface module
 - Vendor had problems meeting spec. but expects to deliver soon
- Implement feedback control of additional gaps (~ κ , δ) in summer '01
- Integrate gas control with equilibrium control in FY'02
 - Gas puffing currently preprogrammed separately, without feedback
 - Procure additional data link for gas system when modules tested
 - Reliable real-time density diagnostic also needed for feedback

Plans for Real-Time Control System

- Development underway for rtEFIT implementation in FY'02 (with GA)
 - Real-time analysis of plasma equilibrium based on full range of data
 - Eventually provide capability for controlling profiles through feedback control of gas puffing, NBI, HHFW (power and phase) (FY'03)
- CHI presents challenges for control (with UW)
 - New conditions for and constraints on equilibrium during CHI
 - Simplest case may be addition of CHI to inductive plasma
 - Research and development required for algorithms to control
 - CHI startup
 - Transition to inductive sustainment
 - Provide both equilibrium control and suppress absorber arcs
 - additional magnetic measurements in absorber region
 - investigate need for additional control coils and supplies


Boundary Physics Plans in FY'01

- Investigate re-boronization of eroded surfaces in normal discharges
 - TEXTOR: Trimethyl boron fueling improved plasma performance
 - PISCES: High deposition rates with carborane in similar plasma
 - Measure boron deposition/erosion Quartz Crystal Probe
- Install low-velocity injector for boron & lithium pellets (CDX-U design)
 - Edge and core transport measurements
 - Wall conditioning studies
- Conceptual study for Divertor Bolometry
 - Initial discussion at Research Forum '01
 - Absolutely calibrated, broad-band 2D system
 - High spatial-resolution, fast 1D or 2D system
- Conceptual study for Edge Cryopump (with ORNL)

Summary

- We expect further significant operational improvements for CY'01
 - Enhanced machine capabilities: 1.5MA, bipolar PF1a
 - Improved control system: κ , δ
 - Improved wall conditioning: 350°C bakeout, advanced boronization
 - New and improved diagnostics:
 - upgraded MPTS, CHERS, MSE, multi-chord interferometry, LM coils, scanning NPA, comprehensive spectroscopy, edge measurements
 - Routine operation of HHFW system with advanced capability
 - real-time phase control
- CHI control is significant challenge
 - Limited resources to develop multi-purpose control system
- Support for diagnostics and tools to satisfy research goals is a problem

Control System Upgrade Hardware

- High Speed low-latency digital data acquisition FPDP + Fiberchannel
- "Skybolt 2" computer (4 G4 processors at 333MHz ⇒ 10GFlop)
- Expandable up to 64 processors in one chassis
- Up to 768 channels of data
- 50MB/s sustained data rate