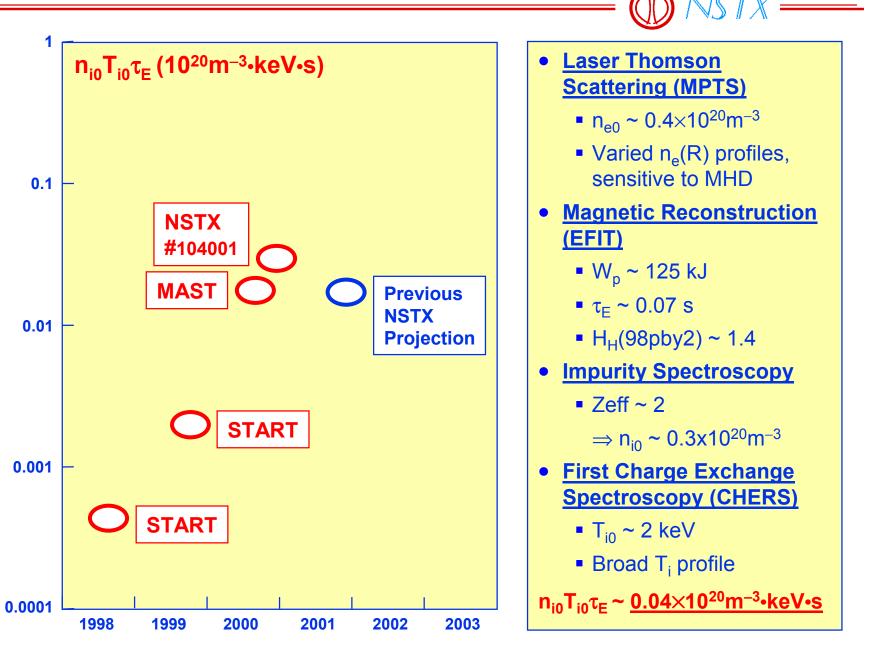


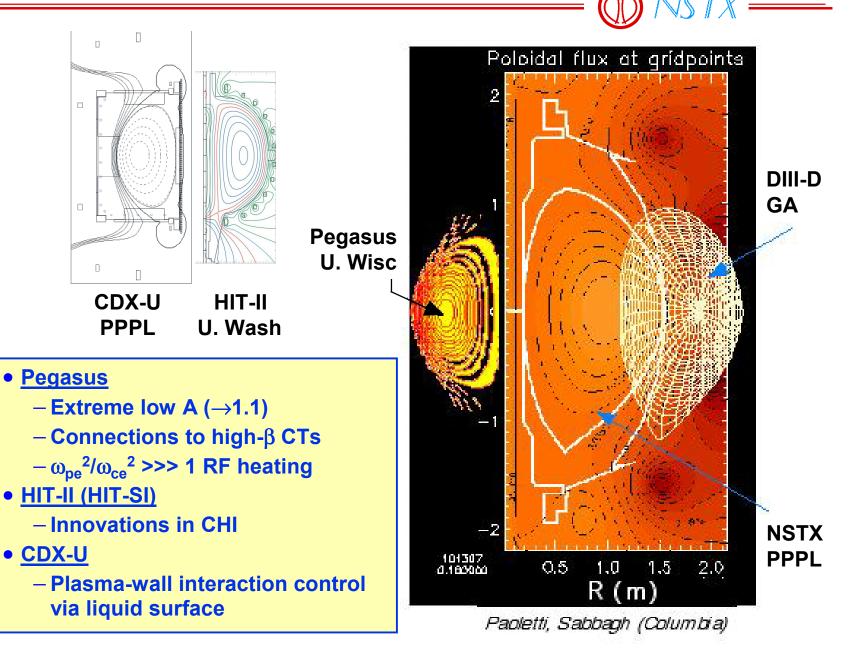
NSTX Program is Ready to Make Major Contributions to Fusion Energy Sciences Program

- Initial NSTX Results Have Been Very Exciting, and Opened up New Scientific Opportunities
- FESAC, IPPA, & NRC FuSAC Reports Provide a Framework for Our Research Plans
- NSTX Baseline Program Addresses Both Science and Energy Objectives
- Requested Budgetary Increments Would Deepen the Science from NSTX, Broaden Participation, and Accelerate Program in Very Important Ways

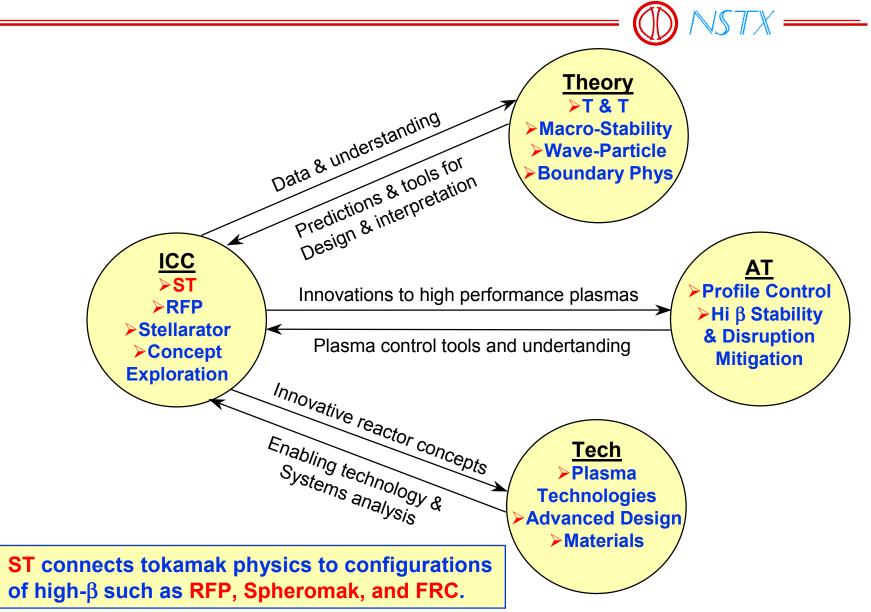

NSTX Has Provided Earlier Than Expected Opportunities for Exciting Scientific Investigations

- NBI up to 4.5 MW
- HHFW up to 4 MW
- Full range of shaping
- MPTS, CHERS
- Ohmic Results
 - $-W_p \sim 60 \text{ kJ} \text{ (EFIT)}$
 - $-\beta_{T} \sim 9\%$
 - $-\tau_{\rm E} \sim 45 \text{ ms}$
 - − H₈₉ ~ 1.3, H₉₈ ~ 1
- NBI Results (best data)
 - W_p ~ 160 kJ (EFIT)
 - $-\beta_{\rm T} \sim 22\% \ (\beta_{\rm N} \sim 4.2)$
 - $-\tau_{\rm E} \sim 100 \ {\rm ms}$
 - H-mode behaviors
 - ITB behaviors
- **HHFW:** T_e(0) > 1 keV
- CHI: I_{toroidal} ~ 260 kA

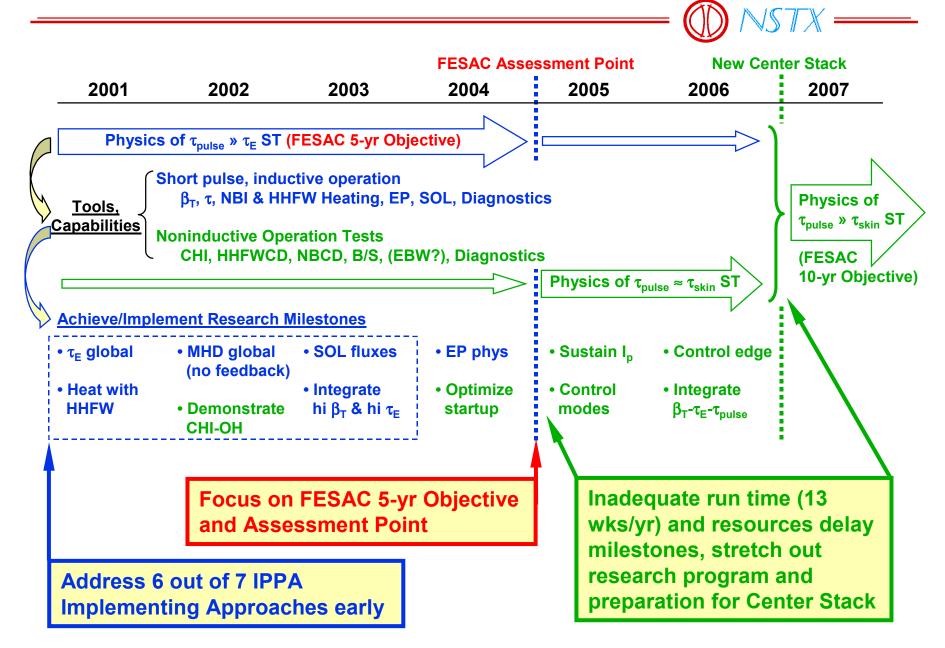
Early Confinement Results Have Been Encouraging!


FESAC Sets Challenging Goals and Exciting Opportunities for ST with 5 & 10-year Objectives

- Goal 2 Resolve outstanding scientific issues and establish reducedcost paths to more attractive fusion energy systems by investigating a broad range of innovative magnetic confinement configurations.
 - <u>5-year objective</u>: Make preliminary determination of the attractiveness of the Spherical Torus, by assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths >> energy confinement times.
 - <u>10-year objective</u>: Assess the attractiveness of extrapolable, longpulse operation of the Spherical Torus for pulse lengths >> current penetration times. (*This requires NSTX center stack upgrade.*)
- The Panel also recommends funding increases, among four areas, to:
 - Focus Advanced Tokamak program, including international collaboration, and to a lesser degree the spherical torus program, towards a 5-year assessment point; and prepare for participation in a burning plasma experiment.


IPPA Articulated Near-Term Metric, Key Issues, and Implementing Approaches for the 5-Year Objective

- <u>Metric</u> Degree of understanding of the (*physics*) processes and techniques that extend plasma pressure, improve plasma confinement, and allow sustained plasmas in a spherical torus concerning candidate devices for studying burning plasma physics and/or testing fusion-nuclear technologies.
- <u>Key Issues</u>
 - Stability & good confinement at high β (\Downarrow development cost)
 - High performance in modest-size for $\tau_{pulse} \gg \tau_{E} (\Rightarrow \tau_{pulse} \gg \tau_{skin})$
 - Very high β and low A \Rightarrow new research opportunities
 - Noninductive startup & sustainment \Rightarrow future steady state fusion devices
- Implementing approaches
 - Achieve Efficient Heat & Particle Confinement
 - Verify Stability of Large Scale MHD Perturbations
 - Heat High-beta Over-dense Plasmas
 - Test Plasma Startup with Noninductive Techniques
 - Disperse Edge Heat Flux at Acceptable Levels
 - Integrate High Confinement & High Beta
 - Explore Spherical Torus Issues in Directed Laboratory Experiments: (Pegasus, HIT-II, CDX-U)

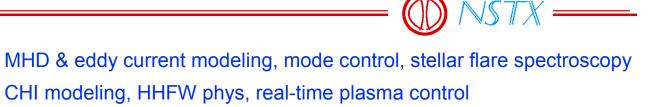

Pegasus, HIT-II, CDX-U Explore Innovative ST Limits

The ST Activities Provide Tools and Capabilities to Enable, and Benefit from Other Activities

NSTX Baseline Program Responds to Near-Term Objectives by FESAC & IPPA

NRC FuSAC Emphasizes Scientific Understanding

- Broaden institutional base and reach into the wider scientific community
 - Broaden research participation in fusion program
 - Enrich pool of ideas
- Predictive Capability
 - Measure success in scientific understanding as well as progress toward fusion energy
 - Advance understanding of key science issues in concerted efforts
 - Identify and implement diagnostic tools required to compare with theory in sufficient detail
 - Allocate sufficient experimental resources to address key scientific issues
- <u>Plasma Confinement Configurations</u> Investigate and contribute to scientific questions that cut across configurations (~FESAC Goal 1)


Advances in science stimulate and accelerate progress in energy research, and vice versa!

NSTX National Collaboration/Cooperation

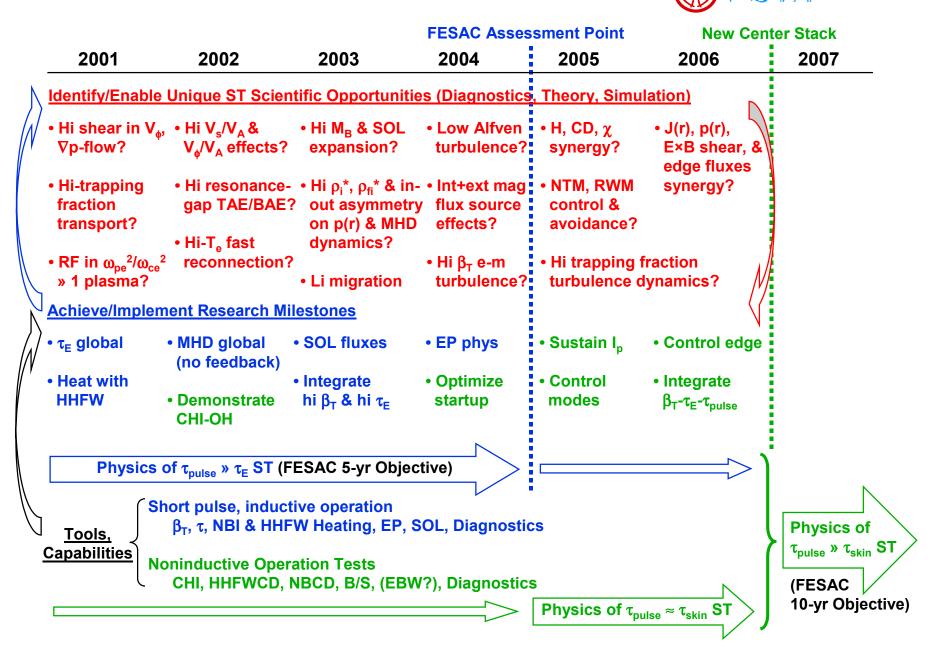
🔊 Columbia U

		with a carry current modeling, mode control, stendinate specifoscopy
	GA	CHI modeling, HHFW phys, real-time plasma control
*	J-H U	USXR & SXR tomography
Los Alamos	LANL	Fast visible & infrared imaging, MHD modeling & simulation
L	LLNL	Edge-SOL and turbulence modeling, stellar flare spectroscopy
	Lodestar	Boundary stability and turbulence modeling
DSFC	MIT	ECH/EBW & HHFW modeling, edge measurements
NASA	NASA GRC	Coaxial helicity ejection propulsion phys
	Nova Photonics	MSE (CIF and LIF)
	NYU	RF and transport modeling
	ORNL	HHFW & ECH/EBW tech & phys, plasma-wall int., CLR Metrol.
PPPL PRINCETON PLASMA PHYSICS LABORATORY	PPPL	Phys analysis, run coordination, joint research, fac. & exp. ops
	PSI	Fast tangential X-ray imaging
Sandia National Laboratories	SNL	Plasma facing materials and material surface analysis
	UCDavis	Far infrared tangential interferometer polarimeter
UCLA	UCLA	Core reflectometry
Reference of the second	UCSD	HHFW modeling, fast probes
W	U of Wash	CHI phys, joint research with HIT-II

NSTX Baseline Program Logic Addresses Science and Energy Goals

			FESAC Asses	sment Point	New Cent	ter Stack
2001	2002	2003	2004	2005	2006	2007
Identify/Enable	Unique ST Scien	tific Opportunitie	s (Diagnostics	, Theory, Simu	lation)	
• Hi shear in V _∳ , ∇p-flow?	• Hi V _s /V _A & V _¢ /V _A effects?		 Low Alfven turbulence? 		• J(r), p(r), E×B shear, & edge fluxes	
 Hi-trapping fraction transport? 		 Hi ρ_i*, ρ_{fi}* & in- out asymmetry on p(r) & MHD dynamics? 	flux source		synergy? • L surface	Physics of τ _{pulse} » τ _{skin} ST
 • RF in ω_{pe}²/ω_{ce}² » 1 plasma? 	reconnection?	• Li migration	 Hi β_T e-m turbulence? 	 Hi trapping f turbulence d 		(FESAC 10-yr Objective)
Achieve/Implem	ent Research Mil	estones			N	
• τ _E global	 MHD global (no feedback) 	SOL fluxes	• EP phys	• Sustain I _p	Control edge	
 Heat with HHFW 		• Integrate hi β _T & hi τ _E	 Optimize startup 	 Control modes 	• Integrate β _T -τ _E -τ _{pulse}	

Baseline program strives to


- National and international participation
- Install diagnostics to measure and compare with theory & simulation
- Optimize run time and capabilities to achieve research milestones
- Milestones \Rightarrow new scientific opportunities \Rightarrow new tools \Rightarrow new milestone
- Fiscal constraints limit depth of scientific understanding

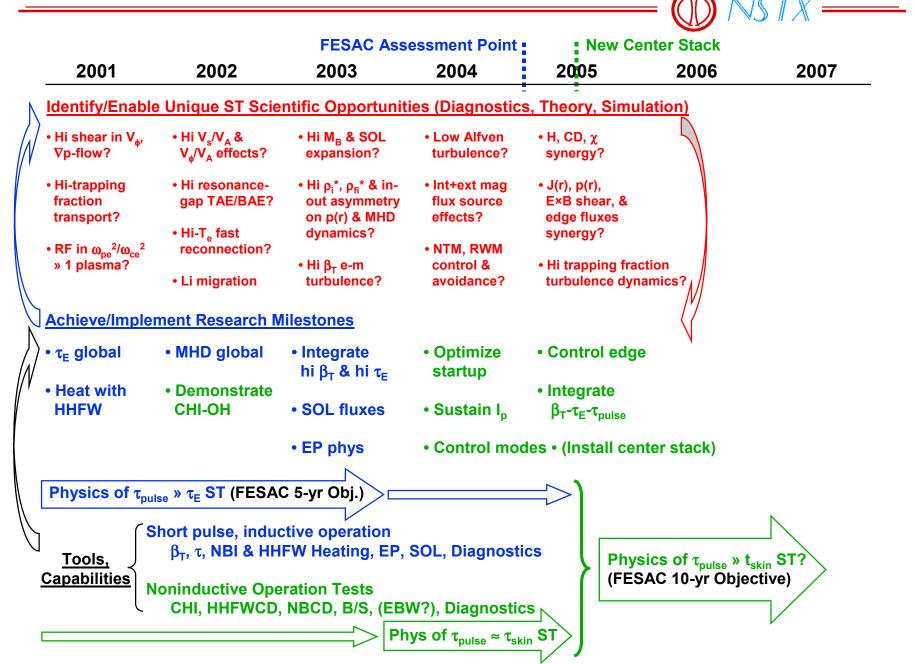
Strong Synergy Exists Between Science and Energy Goals

Example in Transport & Turbulence

- Observations from "τ_E Global" Experiments:
 - -H-mode and ITB-like behavior
 - –Good confinement in high β_T plasmas
 - $-Broader T_i profile (than T_e) in NBI plasmas$
 - -Very high C toroidal flow ($V_C/V_A \sim 0.2$)
- Scientific Questions:
 - –Does large momentum & ∇p-driven flow shear affect turbulence & transport?
 - -Does high β_T alter nature of turbulence?
- Measurement Needs:
 - -New fluctuation and flow measurements
- Understanding can improve future high performance discharges and research milestones

NSTX Baseline Program Logic – All Together

Major Increments Are Needed for NSTX to Achieve Deeper Scientific Understanding and Meet Assessment Point


Present baseline (13 run-wks/yr)

- Emphasizes **FESAC 5-yr objective & assessment point** –attractiveness for short-pulses ($\tau_{pulse} \gg \tau_{E}$).
- Identify and pursue unique opportunities for new scientific understanding, and fast progress in research milestones.
- Delay longer-pulse tests ($\tau_{\text{pulse}} \approx \tau_{\text{skin}}$) to FY05-06.
- Upgrade center stack in FY07 to enable tests for FESAC "10-yr" objective attractiveness for long-pulses ($\tau_{pulse} \gg \tau_{skin}$).

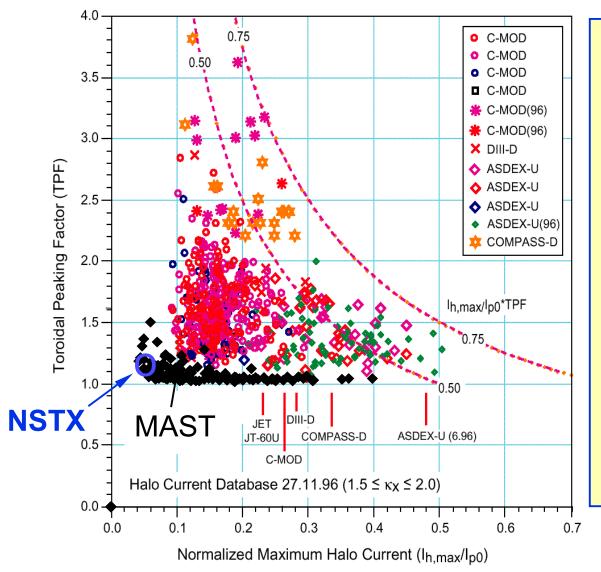
Major increments are needed

- To take advantage of **new opportunities** to achieve **deeper scientific understanding**, accelerate **milestones** and **new center stack** to FY05
 - -Increase run-time (to 20 wks/yr)
 - -Add new diagnostics (core fluctuations, div. TS, He spectroscopy, etc.)
 - -Advance operation capabilities (EBW, mode control, div. cryo., etc.)
 - -Enhance & broaden research participation
 - -Enhance cooperation in theory/simulation and enabling technology

Requested Increments Allows Deeper Scientific Understanding, and Accelerate Research Milestones and New Center Stack

NSTX Will Make Major Critical Contributions to Fusion Energy Science

- Initial experimental results are extremely exciting and creates new scientific opportunities!
- FESAC sets challenging goals for ST
 - -IPPA Articulates Near-Term Metric, Key Issues, and Implementing Approaches
- NRC FuSAC emphasizes scientific understanding.
- NSTX Program Baseline Strategy is responsive to the FESAC Goals and NRC Recommendations
- Requested budgetary increments would deepen the science from NSTX, broaden participation, and accelerate research in very important ways.


-Accelerate new center stack to FY05

• NSTX will provide key information for the FESAC 5-year assessment.

Backup VUs

Halo currents in MAST & NSTX

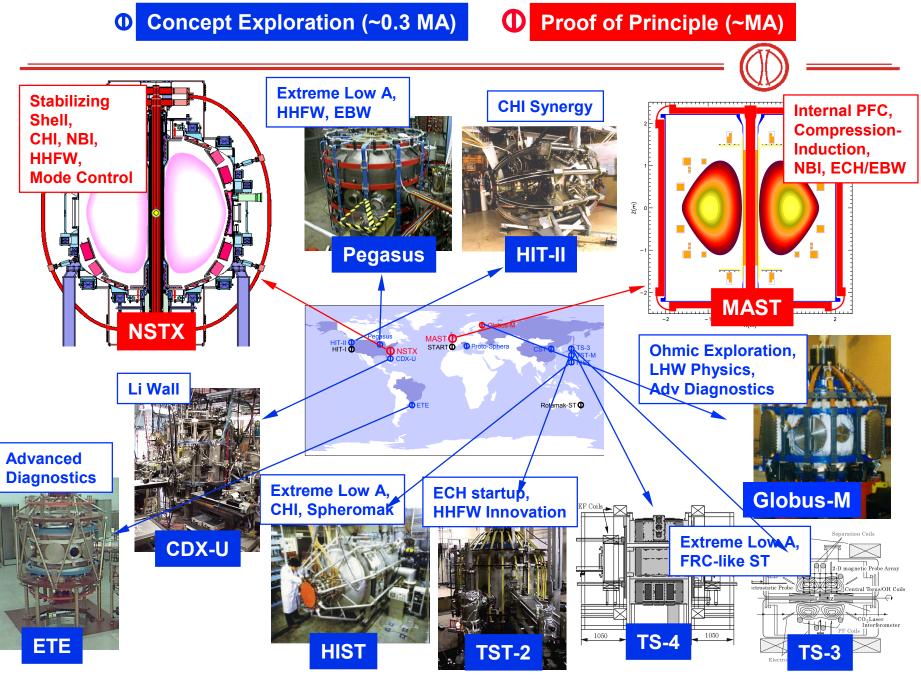
(ITER Physics Basis, Nuclear Fusion **39** (1999) 2137)

- Lower and more symmetric halo currents in ST than in tokamak
- Scientific Understanding Important
- CALOUTSIS, A and GIMBLETT, C G, Nuclear Fusion 38 (1999) 1487.

POMPHREY, N, BIALEK, J M & PARK, W, Nuclear Fusion **38** (1998) 449.

Incremental Research Milestones and Operation Capabilities Are Needed to Meet the Checkpoint

					V // / X	
Incremental Research Milestones		• Full HHFW		Turbulence SupActive Stabil.Edge control	 Noninductive startup Integration >> τ_E 	
(FY99)	(FY00)	(FY01)	(FY02)	(FY03)	(FY04)	
Run-wks:	(14)	(19)	(19)			
2/9911st Plasma 12/99 1 MA, κ ~2 FESAC Checkpoin					SAC Checkpoint	
Operation Capabilities	Inductive	<u>Nonindi</u> Assiste		<u>Nonindu</u> Sustaine		
• Toroidal Beta,	β _τ	• $\rightarrow 25$	• $\rightarrow 25\%$		• $\rightarrow 40\%$	
Bootstrap Curr	ent	• $\rightarrow 40^{\circ}$	• $ ightarrow$ 40%		 → 70% 	
 Current 	• \rightarrow 0.5 MA	• $ ightarrow$ 1 N	1A	• ~ 1 M	A	
Pulse	• $\rightarrow 0.5 s$	• \rightarrow 1 s		• $ ightarrow$ 5 s	5	
HHFW Power	• \rightarrow 4 MW	• ~ 6 M	• ~ 6 MW		• ~ 6 MW	
NBI Power		• $ ightarrow$ 5 M	177	• ~ 5 M	W	
EBW Power	• ~ 30 kW	 → 0.4 	MW (incremental)	• ~ 0.4	MW	
CHI Startup	• $\rightarrow 0.2 \text{ MA}$	 → 0.5 	MA	• ~ 0.5	MA	
Control	 current, R, sh 	ape • heatin	g, density	• profile	es, modes	
Measure	• T _e (r), n _e (r)	• j(r), T _i	(r), flow, edge	• turbul		


NSTX Program Logic & Progress

The Baseline Budget Leads to Delays in Research on Noninductive Sustained Plasmas

_					— (D) N	STX ——
	<u>Scientific</u>	Ohmic studiesInitial CHIInitial HHFW	TransportFull HHFW	Macroscopic stabilityFull CHI	 Plasma-wall Initial β-τ_E integration 	
	(FY99)	(FY00)	(FY01)	(FY02)	(FY03)	(FY04)
	Run-wks:	(14)	(13)	(13)	(13)	
•	2/99 1st Plasma 12/99 1 MA, $\kappa \sim 2$ (t > τ_{s}) ->					
	<u>Operation</u> Capability	<u>Inductive</u>		<u>oninductive</u> ssisted		Noninductive
 Toroidal Beta, β_T 			•	ightarrow 25%		• $\rightarrow 40\%$
 Bootstrap Current 			•	ightarrow 40%		 → 70%
•	Current	• \rightarrow 0.5 MA	•	\rightarrow 1 MA		• ~ 1 MA
•	Pulse	• $\rightarrow 0.5 s$	•	\rightarrow 1 s		• \rightarrow 5 s
•	HHFW Power	• \rightarrow 4 MW	•	~ 6 MW		• ~ 6 MW
•	NBI Power		•	\rightarrow 5 MW		• ~ 5 MW
•	EBW Power	• ~ 30 kW	•	\rightarrow 0.4 MW (increm	nental)	• ~ 0.4 MW
•	CHI Startup	• \rightarrow 0.2 MA	•	ightarrow 0.5 MA		• ~ 0.5 MA
•	Control Control Control			heating, density	 profiles, modes 	
• Measure • T _e (r), n _e (r)			•	$j(r)$, $T_i(r)$, flow, edg	e	 turbulence
NOT						DAC 10 Met 2/8 0/01

NSTX Program Logic & Progress

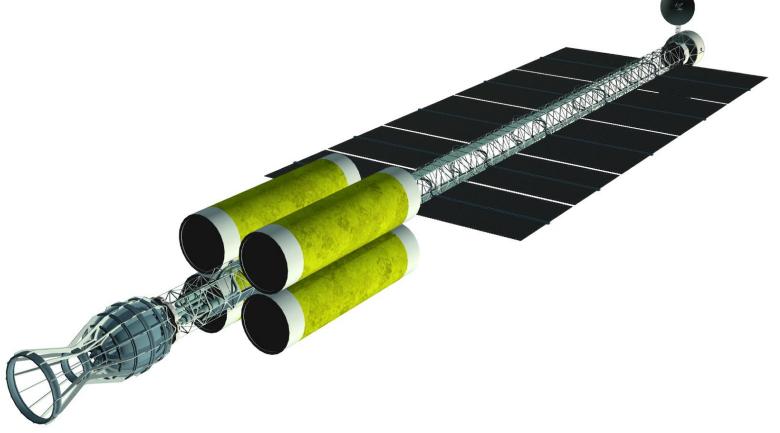
NSTX Is Key Part of Growing US & Worldwide ST Research

NSTX Program Logic & Progress

PAC-10 Met, 2/8-9/01

NSTX Research Also Benefits Greatly from Broad International Collaboration

Brazil	INPE <mark>(ETE)</mark>	Advanced diagnostics
Japan	Hiroshima U	Divertor spectroscopy
	Himeji Inst. <mark>(HIS</mark> T	Ion Doppler spectroscopy for CHI plasmas
	Kyoto-Tokai U	Vertical field current drive
	NIFS	Confinement in presence of large magnetic well
	Niigata U	Analysis of high beta ST plasmas with large flow
	Univ. Tokyo	Ultra high beta ST, EBW emission & interpretation
	(TS-3,4, TST-2)	HHFW heating & current drive, Microwave reflectometry
R.F.	loffe Inst.	Conditioning, RF preionization, startup scenarios,
	(Globus-M)	Advanced diagnostics, RF heating and current drive
	TRINITI	Convective impurity transport
U.K.	UKAEA Fusion	NBI systems, NPA, energetic particles phys,
	(MAST)	Plasma heating & confinement, EBW phys,
		Fast digital signal analyzer, diagnostics
Ukraine	KINR	Energetic particle driven instabilities



Fusion Propulsion for Fast Outer Solar System Transportation

Direct-thrust fusion propulsion concept:

- > D³He fusion reactor using ST concept
- > Coaxial Helicity Ejection of plasma directly to mix with hydrogen propellant
- Confined and expanded by a magnetic nozzle to produce thrust
- NSTX provides CHE physics testbed

