

J.R. Wilson for the ET3 group NSTX PAC-10 Princeton, NJ February 9, 2001

STATUS OF HHFW RESEARCH

- System operated in full configuration
 - All 6 transmitters, Full decoupling and matching system
 - Power level up to 4 MW, routine 2-3 MW
- Electron heating observed
- Use of HHFW as tool begun
 - Early heating to modify l_i and q(0)
 - Used for limit studies

DECOUPLING AND FEED NETWORK

- Programming k_{\parallel} facilitates heating to higher T_e and change to CD phasing
- Decoupling between adjacent straps provided with decoupling loops
 - minimizes mutual effects in vacuum
 - mutual to plasma has small effect on decoupling

• Experiments which follow were conducted with k_{\parallel} ~ 14 m $^{-1}$ $_{\rm JRW \, NSTX \, PAC10}$

- $T_e(0)$ increases to ~ 900 eV in helium plasma at $P_{RF} = 2.3$ MW
- No density increase with RF and V_{loop} decreases by ~ 30 %

• Stored energy increases to 58 kJ: $_T = 10\%$, $_N = 2.7$ JRW NSTX PAC10

 Flattening of the T_e and n_e profiles occurs with the onset of the m = 1 MHD instability prior to the application of the RF

PEAKED HEATING IN THE ABSENCE OF MHD

1/31/01 JRW NSTX PAC10

STRONGER HEATING OBSERVED IN HELIUM PLASMAS

INITIAL RESULTS FROM XP-25 HHFW HEATING DURING I_P RAMP-UP

- $B_T = 3kG$, Deuterium, 1.8-2
- Important operational results:
 - l_i kept 0.5 up to 1MA and into flat-top
 - q(0) elevated during ramp-up and after
 - Flux consumption reduced
 - 1MA plasma current more reliably achieved
- Central T_e increase generally modest
 - Higher $T_e(0)$ with smaller outboard gap
- Rapid density increase w/ broad n_e profile
 - Smaller density rise when $T_e(0)$ is larger
- Results depend on gap and having all 6 XMTRs

• Transmitter drop-outs modify spectrum and Power

TYPICAL SHOT WITH HHFW-ELEVATED q(0)

7 shots with significant change in q(0), l_i
These shots have P_{RF} (t=50ms) = 2MW
Lower powers did not have gap scan
Higher power (3MW) not tried at all

EARLY HHFW LOWERS V_{LOOP} & RAISES q(0)

Result requires outer gap of 10 cm - smaller gap leads to larger temperature and smaller density increase with less effect on q(0)

JRW NSTX PAC10

STRONG DENSITY INCREASE OBSERVED WITH EARLY HEATING

HHFW PLANS (2001)

- Quantitative comparison of electron heating and modeling
 - Requires second TS laser
 - Explore scattering theory
- Continue to exploit HHFW as tool
 - Understand early result
 - Attempt to broaden pressure profile for higher
 - Begin current drive studies
- Begin ion interaction experiments
 - Need CHERS, NPA, lost ion probes
 - PhD Dissertation

1/31/01 JRW NSTX PAC10 – HHFW interaction with NBI

TECHNICAL GOALS AND PLANS (2001)

- Operate to full power (6MW)
 - Reinstall /4 transformers (smaller impedance ratio)
 - Reduces voltage in feed lines
 - Full bakeout
 - Dedicated rf camera
- Complete full closed loop phase feedback
 - Fiber bundle has been pulled (1/01)
 - Should allow quicker phasing changes
 - Makes phase independent of matching
 - Allows phase changes during pulse

HHFW PLANS (2002)

- Begin serious current drive studies
 - Requires MSE
- Continue use of HHFW as tool
 - Integrate with plasma control system
 - Begin study of CHI to HHFW handoff
- Complete ion interaction study

SUMMARY

- HHFW research is making good progress
 - Full system in operation
 - Electron heating produced
 - Use of HHFW as discharge control tool begun
- Plans in place to continue both HHFW particular physics and exploitation as tool
 - Detailed comparisons with theory/modeling
 - Current drive
 - Ion interactions
 - Early heating/CD and pressure profile modification