

PAC Action Items (Fast Ions, Losses, etc.)

S. M. Kaye Head, NSTX Physics Analysis PPPL, Princeton University Princeton, N.J. 08543

> *NSTX PAC-10 8-9 February 2001*

Fast ion losses can be significant on NSTX

- Assess experimental results
 - Study heating efficiency as a function of beam source
 - Neutrons, fast ion loss probes
 - Base loss estimates on measured profiles
 TRANSP (GC w/ FLR)
- Fast ion loss in large outer gap equilibrium
 q₀>>1 (optimized high- case)

Heating Efficiency Comparison

NSTX Equilibrium

Profiles used in TRANSP Beam Ion Loss Calculation

Multi-Point Thomson Scattering

Fractional Loss

Loss Channels NSTX = Loss Estimates Based on Measured Data (TRANSP) 30.0-25.0 **Bad Orbits** Charge-Exchange Fractional Loss (%) Shine-Thru 20.0-15.0-10.0-5.0-0.0-50 60 70 R_{tan} (cm)

Measured and Calculated Neutron Rates Consistent

Beam Source

Stability-optimized NSTX equilibrium with 14 cm outboard gap

 Stable to ballooning and n=1-3 kink modes and with NSTX passive structure

Need to study effect of charge-exchange loss - Neutral density estimates required