

Physics Analysis for NSTX Research

S. M. Kaye Head, NSTX Physics Analysis PPPL, Princeton University Princeton, N.J. 08543

> *NSTX PAC-10 8-9 February 2001*

Physics Analysis Plans

- Goal is to develop understanding of present results
 - Develop science basis for toroidal physics at low R/a
 - Develop strategies to improve performance
- Status and plans for analysis tasks and tool development required to achieve NSTX research objectives
 - Focus on near-term (FY01-02)
- Physics plans fall into the areas of
 - MHD
 - Turbulence and Transport
 - Energetic Particles
 - HHFW
 - CHI
 - Boundary Physics

- NSTX discharges exhibit a range of MHD phenomena
- Study these phenomena within framework of resistive and ideal MHD theory
 - EFIT reconstructions/TRANSP/TSC bases for stability studies (GA, Columbia, PPPL)
 - M3D, PEST III, NIMROD for resistive stability (PPPL, LANL)
 - Links to DCON, PEST, GATO established (LANL, Columbia, PPPL, GA)
 - More complete diagnostic set
 - Toroidal Mirnov coil array
 - Locked mode coils (FY01)
 - *Kinetic profiles (T_e(r,t), n_e(r,t), T_i(r,t), v (r,t),...)*

Neoclassical Tearing Mode Analysis

MHD which may be linked to NTMs observed to limit discharge performance (pol~0.3 to 0.5)

•Use PEST-III to calculate Δ , and eigen-function

•Use NIMROD subroutines to calculate neoclassical terms

•Combine and plot results in IDL

•Has led to numerous improvements in PEST-III (high- β , low-A resolution issues)

*Low-*β *NSTX equilibrium showing a 3/2 tearing mode*

q-Limit Manifest as Kink Induced Discharge Termination

t=168 msec

XP approved to study current driven kink modes (FY01) PEST, GATO, DCON for ideal analysis

 Determine passive plate electrical configuration for optimal high- stability and plasma control (PPPL, Columbia, GA) [FY02]

---> MHD code benchmarking

- Benchmark axisymmetric PEST, GATO, DCON for reference NSTX equilibrium (t=25%)
 - Marginal _t comparable
 - Differences in B_{norm} (coordinate system dependent)
- B_{norm} input to VALEN for 3D calculation; study of various electrical configurations
- First step towards assessing need for and designing active mode control system (decision point end of FY03)

Transport and Turbulence

- Global _E studies are using results from EFIT magnetic reconstructions
 - EFIT run routinely between shots; results available on tree
 - Important to make code (not just results) available to group
- Local transport studies will be performed using TRANSP
 - Local analysis started
 - "Between-and-Among-Shots" TRANSP (BEAST) in preparation (Spring-Summer '01)
- Validating results among EFIT, diamagnetic loop, kinetic profiles (MPTS)
 - Kinetics vs magnetics stored energy comparisons
 - Self-consistency of kinetic profiles

Energy Confinement Enhanced Over Both L- and H-mode Predictions

Investigate neoclassical and turbulence-driven confinement levels with NCLASS, GTC, FULL, GS2 (FY01-02) - Role of flow shear

Local Measurements Available for Power Balance Studies

Local Power Balance Studies Have Started

Large T_i-T_e in outer region can lead to negative thermal conduction

NSTX

Ion-electron coupling would limit T_i to lower values in outer region

Role of MHD?

Local Measurements Available for Power Balance Studies

Kinetics/Magnetics discrepancy exists

NSTX

Ion-electron coupling issue a non-factor when T_i~T_e

Local Power Balance Studies Have Started

Ion power balance is "well-behaved"

Most of power flow is through electron channel

NSTX

Transport and Turbulence (cont'd)

- Use observations of edge turbulence to characterize edge stability (LANL, PPPL)
 - Important for H-mode studies, wave coupling, SOL characteristics, CHI current penetration
 - Diagnostic tools
 - Dedicated gas puff/fast camera for edge turbulence studies
 - Edge reciprocating probe (UCSD)
 - Edge reflectometer (UCLA)
 - Expected turbulence patterns
 - Edge turbulence codes (BOUT Xu, LLNL, BAL Myra, Lodestar)
 - Couple testing of turbulence predictions directly to experimental results
 - Configuration scans
 - TF/q scan

Fluctuating density shows sheared poloidal flow and radial streamer structures across the separatrix

10-20 cm poloidal scalelengths consistent with observations

Energetic Particles

- Fast ion orbit losses being studied numerically (D. Darrow, PPPL; R. Akers, Culham Labs; A. Glasser, LANL)
 - Significant fast ion loss possible
 - Single particle orbit calculations gives most exact picture
 - TRANSP Monte-Carlo guiding center code with FLR corrections being upgraded (FY01)
 - J. Egedal (MIT) determination of phase space loss cone boundaries may speed up loss estimates (FY01)
- High-frequency modes observed
 - In TAE ($v_{NBI} > v_{Alfven}$) frequency range and higher (≤ 1.5 MHz)
 - NOVA-K, non-linear codes for understanding modes
 - Fast Mirnovs, ion loss detectors important for assessing impact of modes

High-Frequency Modes

- Observed on Mirnov coils
- Mode frequency depends on plasma parameters
- Modes depend on fast ion distribution

- Considering compressional Alfven waves as source Free energy derived from fast ion phase space anisotropy

(E. Fredrickson, N. Gorelenkov, E. Belova)

Possible TAE or EPM's have also been seen at lower frequencies

(E. Fredrickson, N. Gorelenkov)

High Harmonic Fast Wave Heating

- Develop HHFW heating and current drive package for integration into TRANSP/TSC/EFIT
 - Heating profiles for confinement studies
 - Driven current profiles for equilibrium solutions and current drive accounting

VSTX =

- CURRAY (Mau, UCSD), HPRT (Menard, PPPL) [Ray Tracing]; TORIC (Bonoli, MIT), AORSA (Batchelor, ORNL) [Full Wave]; METS (Phillips, PPPL) [1D]
- Benchmark with measurements (FY01)
- Effect of energetic and thermal ions on RF absorption
 - Results from HPRT indicate
 - Ion damping non-negligible above $T_D(0) = 1 \text{ keV}$
 - Damping on hot ions relatively small (≤5-10%)
 - Subject of PhD dissertation (A. Rosenberg)

Broad response to HHFW heating

Modeling indicates off-axis heating (local transport issues to explore)

(J.R. Wilson, C.K. Phillips, T.K. Mau, P. Bonoli)

CURRAY, TORIC

Co-axial Helicity Injection Determine CHI equilbrium - open or closed flux surfaces

- Up to 260 kA of current driven non-inductively by CHI
- Used EFIT, MFIT, TSC to determine configuration
- MFIT, TSC indicate flux surfaces remain open; modifications EFIT code underway (Lao, GA) to handle "open" equilibria (allow current in private flux region)
- MFIT (Schaffer, GA) filament code using magnetics measurements as constraints for equilibrium fit
- TSC (Jardin, PPPL) dynamic plasma evolution using actual coil currents, measured fluxes to solve for 2D equilibrium

t = 150 ms, I_P = 202 kA I_{INJ} = 20 kA

MFIT Results

Boundary Physics

- Model neutral density distribution using DEGAS2
 - Fast camera for D emissivity (LANL/PPPL)
 - 1-D CCD camera (ORNL)
- Benchmark models of heat and particle flux in a range of NSTX configurations (IWL, DND, SND)
 - UEDGE/DEGAS2 (LLNL, PPPL)
 - Fast reciprocating probe (UCSD)
 - Divertor bolometer (TBD)
- Determine importance of "Resistive X-modes"
 - Resistive ballooning in the vicinity of an X-point
 - Subject of LODESTAR-LLNL collaboration (Myra, Xu)
 - Cross-cutting with Transport

- Results to date provide broad basis for physics analysis in wide range of areas
 - More comprehensive analyses will be forthcoming as additional diagnostics are commissioned and as data are validated
 - Have identified diagnostics and analysis tools that give large leverage in addressing these issues
- An important general area of work is to develop scenarios for achieving our goals of high and bootstrap fraction
 - Use recent NBI confinement, stability results as a basis for scenario development
 - Include HHFW deposition and physics-based transport models