

Status Report of Next-Step ST (NSST) Scoping Study

Masa Ono

For the NSTX National Team and the NSST Working Group (LPDA)

NSTX PAC 11 Meeting Oct. 4 - 5 , 2000 PPPL

Talk Outline

 ST Performance Extension Experiment Next-Step ST (NSST)

- Mission and Approach of NSST
 Scientific Opportunities of NSST
- NSST Device Design Point
- Summary

ISST

The Next-Step-ST will be in the Performance Extension Phase

The Magnetic Fusion Energy Portfolio

What is Performance Extension?

Criteria, Goals and Metrics for FESAC (10/8/99)

- •Explored physics of the concept at or <u>near the fusion-relevant</u> <u>regime absolute parameters</u>.
- •Achieved <u>dimensionless parameters</u> approaching those of a <u>fusion</u> <u>power system</u>.
- •Deployed a <u>variety of auxiliary systems</u> at significant scale for control and optimization.
- •Extensive diagnostics provided thorough coverage in space and time.
- •Integrated physics and technology elements into <u>single</u> <u>demonstrations</u>.
- Theory and modeling provided a predictive capability of the concept.
- Generated <u>sufficient confidence that absolute parameters needed</u> for a fusion development can be achieved and a fusion program with a reasonable cost can be implemented.
- Conduct as a National Program.

In addition (not specifically in the report),

• DT Operation will be clearly an additional benefit.

NSST =

Mission of NSST

- Explore physics of non-inductively sustained ARIES-ST-like regimes at mid-current range (5-10 MA)
- Contribute to the MFE science data base for low aspect-ratio / high beta toroidal plasmas at fusion reactor parameters.
- Develop non-Ohmic start-up techniques at Multi-MA level for ST (and AT) reactors.
- Provide sufficient physics basis for design and construction of Fusion Energy Development devices (e.g., VNS and/or ST-pilot plant.)

NSST

NSST Device and Plasma Parameters

Parameters	Unit	NSTX	DIII-D	JET	NSST	ARIES- ST
R	m	0.85	1.65	3	1.5	3.2
a	m	0.65	0.62	1	0.94	2
A(R/a)		1.3	2.5	3	1.6	1.6
V	m ³	12	25	100	77	950
B _T	Т	0.3(0.6)	2.1	3.5	2	2
Ip	MA	0.8-1.6	2-3	3-3.8	5-10	28
A Ip	MA	1-2	5-7.5	9-12	8 - 16	45
q _x		10	3	3	10	10
q*		3	2	2	3	3
κ		1.6-2.4	1.8-2.4	1.7	2.7	3.6
δ		0.2-0.6	0.6 - 0.8	0.2-0.3	0.6	0.67
Config.		SN/DN	SN/DN	SN	SN/DN	DN
τ–flat top	sec	5 (1)	6-10	30	4 - 50	SS
Paux	MW	11	23	40	40	27

NSST Would Achieve Dimensionless Plasma Parameters

	NSTX	NSST	ARIES-ST	
ν*	0.2	0.04	0.015	
a/ρ _i	35	130	140	
β_{T}	0.4	0.4	0.5	
εβ _T	1	1	1	
q ₉₅	10	10	10	
F _{bs}	0.7	0.85	0.95	
n _e /n _G	0.7	0.7	0.7	
V_{NBI}/V_{Alfven}	V _{NBI} /V _{Alfven} 3			
V_{α}/V_{Alfven}		4.4	5	

"Achieved <u>dimensionless parameters</u> approaching those of a <u>fusion power system</u>. FESAC, PE"

NSST =

ST Research at Fusion Parameters (10 keV, 10¹⁴cm⁻³) "Explored physics of the concept at or <u>near the fusion-relevant</u> regime absolute parameters. FESAC - PE"

- Plasma confinement: Understanding and Improvements
 - Confinement physics for L-mode, H-mode and ITBs at fusion temperatures, high beta and low collisionality
 - H-mode physics including L-H transition power threshold at multi-MA level.
- MHDs: Understanding and avoidance
 - Resistive-wall mode and plasma rotation
 - NTM and stabilization
 - High frequency MHDs (TAE, CAE, etc.)
- Non-inductive plasma sustainment at multi-MA level using bootstrap current and current drive.
- Non-OH Start-Up at multi-MA, representing an order of magnitude increase from 0.5 MA NSTX CHI goal.
- Heating & Particle Handling: With anticipated 30 MW of heating power up to twice τ_{skin} (\approx 20-30 sec), the challenge will be significantly greater.
- Energetic particle physics including α -particle effects.

NSST =

R&D of Non-Ohmic Start-up for ST

ST Reactors (ARIES-ST, VNS, etc.) require non-OH Start-up.

	HIT-II	NSTX	NSST	ARIES-ST
lp (MA)	0.2	0.5	5	28
R(m)	0.3	0.8	1.5	3.2

On NSTX, CHI (a fast start-up technique) making steady progress. .

- CHI has already produced 390 kA of toroidal current with current multiplication of 14. (Goal is Ip = 500 kA)
- CHI discharge quality is improving (n=1 oscillations, higher temperature, etc.)

For NSST, the start-up requirement is a significant extrapolation even with complete success of CHI on NSTX.

 \Rightarrow Development of non-OH start-up at multi-MA level will be an

essential element of the NSST research program.

Non-OH Start-Up Research on NSST

• ARIES-ST and ARIES-AT assume bootstrap overdrive for a (slow) start-up. For steady-state devices, the required ramp up time is not a limiting factor.

NSST

• Fast start-up such as CHI is attractive for a limited pulse length ST devices including NSST.

 \Rightarrow The NSST Non-OH Start-Up research should include slow-start-up techniques.

• NSST to investigate fast start-up techniques including CHI and poloidal field utilization to demonstrate non-OH multi-MA start-up.

• NSST to investigate slow start-up techniques using bootstrap current over drive + CD to establish physics basis for mulit-MA start-up feasibility.

Non-Inductive Sustainment Research on NSST

• ARIES-ST and ARIES-AT assume largely bootstrap current sustained (95%) discharges. It is clear the NSST non-inductively sustained plasmas should maximize the bootstrap current fraction.

• On NSTX, HHFW induced H-mode produced high $\epsilon\beta_{pol} \approx$ 0.8 with nearly zero loop voltage in the heating mode. \Rightarrow The current was believed to be sustained mainly by bootstrap current.

• NSST to investigate techniques to maximize the bootstrap current fraction including some degree of pressure profile modification (H-mode, advanced fueling, etc.).

• NSST to investigate efficient non-inductive current drive techniques including EBW. Gyrotrons are available in this frequency range.

Possible Heating and Current Drive Systems

NBI: Use existing 4 NBI Injector 30 MW System from TFTR

- Bulk plasma heater
- Impart toroidal momentum for toroidal rotation for wall mode stabilization and sheared flow for improved confinement.
- "Core" Fueling
- Facilitate plasma diagnostics
- Increase DT reactivity.
- Current Drive

ICRF: Use existing 10 MW RF systems (8 Transmitters)

- Core ion and electron heating. (2 Ω_{T})
- Mode-conversion CD and NTM stabilization
- IBW for transport barrier formation for pressure and bootstrap current profiles

EBW (10 MW)

• Non-inductive start-up assist, NTM stablization and CD.

"Deployed a <u>variety of auxiliary systems</u> at significant scale for control and optimization. FESAC, PE"

NSST —

Scientific Benefit of DT Operations

- Energetic particle physics is an exciting area of research for ST.
 - NSTX NBI heated discharge with $V_{\rm NBI}/V_{\rm alfven} >> 1$, high Ti regime was observed.

- Stochastic ion heating via CAE proposed to explain the high Ti regime in NSTX. (D. Gates, et al., PRL 2001)

- V_{α}/V_{alfven} is expected to be large (≈ 5) for ARIES-ST.
- Comparable V_{α}/V_{alfven} (\approx 4)an be obtained on NSST.
- DT Operations could help access higher performance plasmas through increased alpha-heating power and isotope effect.
- α-particle confinement and effects on plasma stability and confinement behavior are important scientific issues for FED ST devices.

NSST Can Access A Wide Parameter Range

p A (MA)

ഥ

9

15

20

S

30

flattop duration, s

ŝ

90

45

50

ហ្គ

S

A Flexible Systems Code developed to explore possible device parameters within the following constraints*

- Available site power.
- Fit within the Exp. Hall.
- TF/OH coil temperature limits.

• P_{aux} = 30 MW

* Work carried out with the FIRE effort.* Code benchmarked with TSC.

A = 1.6, R = 1.52 m, $\kappa = 2.5$, $\delta = 0.3$ $\Delta Rtf = 0.262 m$, $\Delta Roh = 0.210 m$ CHI OH coil limited (Q=0.9 at HH = 1.4) 16 TF coil limited Inductively sustained (Q=2 at HH = 1.4)(Q=10 at HH = 2)8 Non-inductively sustained **Non-inductively** (Q=0.25 at HH = 1.4)Sustained flat top τ -pulse = 2 τ -skin

NSST Operational Scenarios

Aiming toward ARIES-ST vision:

NSST

- OH to ramp-up to Ip \approx 5-8 MA with half-swing.
- Non-inductive current drive and heating power to sustain Ip \approx 5 -8 MA (by bootstrap + CD) for twice τ -skin (\approx 20 sec).
- Non-OH start-up capability to investigate start-up techniques (both fast and slow) at multi-MA level.
- Full OH swing to access ≈ 10 MA range for purely inductively driven pulse ≈ 5 sec >> $\tau_{\rm E}$.
- Facility to be tritium capable for α -particle physics investigation.

OH Is Feasible for NSST

• Liquid nitrogen cooled coils to minimize the power and energy requirements.

A Viable OH Design Possible Through Engineering Innovations

• A novel 2 part OH coil was developed to optimize use of available space resulted in 50% flux increase

- outer part is OFHC Cu operated to both stress and thermal limits.
- inner part is BeCu operated to thermal limit (but typically still below stress limit)

NSST to Utilize NSTX Organizational Model

- Designed and constructed by a multi-institutional national team.
- Cost effective utilization of existing site-credit and infrastructure.
- Flexible design to facilitate upgrades / maintenance / and repair.
- Emphasize physics capabilities including state-of-the-art diagnostics.
- Experiments to be carried out by a national research team selected through the DOE peer-review process.
- A key element of the national fusion energy science program with extensive theory/modeling while promoting international cooperation.

Summary

NSST -

• NSST will provide physics data base for Ip A \approx 8 - 16 MA class toroidal plasmas at lower aspect ratio and higher toroidal beta regimes.

• A Performance Extension (PE) step toward ARIES-ST and VNS is a logical NSST goal. If successful, NSST will provide sufficient physics basis for the construction of VNS/ST-Pilot Plant.

• The NSTX Organizational and Research Program Model seems to apply well to NSST.

- Research Opportunities:
 - Non-inductive start-up (slow & fast) development at multi-MA level.
 - Non-inductive current sustainment at multi-MA level
 - Plasma confinement and stability investigation at high temperature, high beta and in the presence of α -heating.
 - Particle and Power Handling at high heating power and longer duration.

This is a draft NSST scoping study.

Your advice and comments are greatly appreciated.