

NEW RESEARCH OPPORTUNITIES AND PROPOSED EXPERIMENTAL EMPHASES FOR FY 2002

R. Maingi Oak Ridge National Laboratory

For the National NSTX Research Team

NSTX Program Advisory Committee Meeting #11 Princeton, NJ

Oct. 4-5, 2001

🛅 🛗 UCDavis 📶 🚱 🕵 🚺

Outline

- Planning process
 - milestones
 - decision points
 - new facility and diagnostic capabilities
- Topical area research program
 - Transport
 - HHFW heating and current drive
 - MHD studies
 - Boundary Physics
 - Non-inductive startup
- Draft program emphases

NSTX research plan is in early phase of multi-step planning process

- Fundamental ST physics issues addressed by milestones
 - Milestones and decision points drive program priorities
- Formulation of plan has multiple steps
 - NSTX Results Review (9/19 9/20)
 - Top-down planning and PAC input (10/4 10/5)
 - Refined analysis presented at APS meeting (11/'01)
 - NSTX Research Forum (11 or 12/'01)
 - Refinement of research plan and PAC input (12/'01 3 /'02)
- 12 run weeks in FY '02

NSTX milestones address crucial ST physics issues and drive research plan

- Effectiveness of HHFW CD (FY '02)
- <u>500 kA CHI discharge, feedback control, add induction and</u> <u>HHFW to CHI (FY '02)</u>
- Transport with high β and rotation ('02)
- <u>MHD stability without wall stabilization ('02)</u>
- Wall heat flux measurement (FY '03)
- <u>Sustainment of ~ 1-s pulses (FY '03)</u>
- Simultaneous high β and τ (FY '03)

Research plan must provide data for near-term decision points

- EBW System (end FY '02)
- *RWM Active Stabilization (end FY '02)*
- NTM scientific assessment input to EBW plan (mid FY '03)
- Advanced PFC and density control (end FY'03)
- *RWM Active Stabilization System FDR (end FY '03)*
- *EBW System FDR (end FY '03)*

NSTX Diagnostics Implementation Plan (FY01-03)

()) NSTX -----

Transport and turbulence research guided by near term milestone

- Transport at high β and high rotation FY '02
- Simultaneous high β and τ FY '03
- New capabilities
 - inner wall gas puffing, density feedback
 - high temperature bake-out
 - 20 channel Thomson
 - 70 channel CHERs (March '02)
 - correlation reflectometer (UCLA)
 - edge reciprocating probe (UCSD)
 - faster gas-puff imaging camera $\sim 1 \text{ MHz}$ (LANL)
- Draft run time allocation 9 days
- Research topics
 - Resolution of two fluid power balance
- Thermal transport and confinement studies
 ^{10/4/01} 9:45:25 AM — H-mode and other studies
 Maingi

Resolve two-fluid power balance

- Determine additional sources of power
 - Compressional Alfven Eigenmodes (CAE) effects
 - More beam power and voltage scans, beam blips
 - Centrifugal heating via high rotation
- Refine loss terms
 - e-i coupling with high rotation
 - poloidal density asymmetry?
 - FLR effects on neoclassical transport
- Continue data validation comparisons!

Thermal transport studies guided by calculations; Confinement studies focus on R/a effects

- Use gyrokinetic predictions to design XP's
 - electron transport dominates
 - T_e/T_i stabilization of ETG
 - Effects of high β and rotational shear
 - rotation scans?
- Measure long- λ turbulence (UCLA)
 - short- λ measurement ~ '04?
- Role of R/a in global τ_E
 - inter-machine w/DIII-D
 - within NSTX: 1.3<R/a<2</p>

10

= 🔘 NSTX ------

H-mode Studies will focus on transport rates, LH physics, and pulse length extension

- Power balance and transport
- Measure parametric dependence of P_{L-H}
 - Compare local parameters at L-H transition with models
- Optimize quasi-steady Hmodes
 - longer duration
 - lower pressure peaking
 - higher β and τ target

10/4/01 9:45:25 AM

Run time needed for edge turbulence and transport studies, test of operational limits, and impurity transport

Maingi

- Gas-puff Imaging: Test BOUT and BAL predictions
 - configuration/shape
 - safety factor, I_p and B_t
- New edge reciprocating probe $(n_e, T_e, E_{DC}, \tilde{\phi}, \tilde{n}_e, \tilde{T}_e)$
- Density and q-limits after high temp. bake-out
 - link between turbulence and density limits
- More impurity transport experiments

Current drive milestones and decision points require high level of resources in FY '02

- <u>Effectiveness of HHFW current drive FY '02</u>
- <u>Startup and sustainment ~ 1s pulse FY '03</u>
- EBW System (end FY '02)
- EBW System FDR (end FY '03)
- New capabilities
 - high temperature bake-out
 - improved shape control for RF coupling
 - 6 MW power at 7 m⁻¹ and longer pulses
 - edge reciprocating probe
 - scanning NPA
 - 2 channel MSE shake down (March '02)
- Draft run time allocation 12 days

Current drive will be focus of near term HHFW research

- Optimizing pulse length and power coupling
- Heating studies
 - deposition profile
 - coupling to CHI plasmas
- Current drive studies
 - Long-pulse RF driven H-modes
 - EBW plan
- RF interaction with NBI

Large code benchmarking effort crucial to modeling of HHFW deposition profile

- Ray tracing and full-wave codes show significant heating profile differences
- 2-D effects shift profile in ray-tracing code
- Benchmarking of codes part of SciDAC effort
 - more NSTX data required

Rosenberg, Menard, Phillips

15

Benchmarking with advanced theory and data key to understanding HHFW

Approach: <u>benchmark and test</u> faster models against most sophisticated theory and measurements

Simulation shows loop voltage changes difficult to measure under 'normal conditions'

HHFW driven H-modes may provide a suitable current drive target

- High β_p , low loop voltage $(\epsilon\beta_p \sim 0.7)$
- ELMy up to 120ms length
- Was limited by TF flattop -TF fix will allow extension
 - Good target for ~ 1s startup and sustainment milestone also

EBW decisions will be made based on data from NSTX and other machines

- Theoretical projections
 - Efficient current drive (0.1 A/W at 3 x 10^{19} , 50% conversion)
 - Localized heating, FWHM ~ 10 cm
 - Emission studies inverse problem of current drive (A. Ram)
 - Next step: realistic time-dependent simulations
- Part 1 NSTX studies
 - Assess NTM role in limiting beta over broader range of conditions
 - Continue EBW emission studies on NSTX
 - New horn w/local limiter for EBW low power coupling tests (ORNL)
- Part 2 take advantage of other machine results
 - MAST, Pegasus, and CDX-U EBW research
 - ECCD stabilization of NTM in DIII-D, ASDEX-Upgrade

10/4/01 9:45:25 AM

Experiments required to understand and improve RF and NBI compatibility

- NPA data shows fast ion tail being pulled out by HHFW
- Simple ray-tracing calculations using NSTX profiles predict high fast ion absorption in certain low β discharges
- Effect previously shown to diminish with increasing β (Menard, PAC-7)
 - increase β
 - decrease relative beam ion density
 - (subject of student thesis)

MHD topical area has substantial near term milestones and decision points

- MHD mode identification at high β FY '02
- Simultaneous high β and τ FY '03
- *RWM Active stabilization (end FY '02)*
- *RWM Active stabilization system FDR (end FY '03)*
- EBW System (end FY '02)
- NTM scientific assessment input to EBW plan (mid FY '03)
- *EBW System FDR (end FY '03)*

$\begin{tabular}{ll} MHD research will focus on identification of $$$$$$$$$$$$$$$ limits and $$$ modes in a range of conditions $$$$$$$

- New capabilities
 - PF5 error field reduction
 - Inner wall gas-puffing longer pulse H-modes?
 - Additional SXR for slow and non-rotating modes
 - 70 channel CHERs, 20 channel Thomson
 - Major upgrade to magnetic and fast sensors
 - Between-shot analysis of locked-mode data
- Draft run time allocation 9 days
- Research topics
 - Scaling of β limit with equilibrium parameters
 - wider range of δ , κ
 - dependence on pressure and current profile shape
 - Locked modes and error fields
 - Resistive wall modes

10/4/01-9:45:2 Macclassical tearing mode avaidance

Error field will be reduced in upcoming run

- Re-align PF5 coil centroid
 Reduce 30-50G edge error
 - Minimize n=1 component
- Measure error-field early in next run
 - Scan density and rotation change island size and compare with pre-fix

Resistive wall mode research to focus on confirmation of mode characteristics

- Measure dependence of outer-wall gap on mode growth time
- Determine characteristics of mode coupling to passive stabilizers in ST geometry
- Conduct our part of DIII-D & NSTX similarity expt. -RWM dependence on R/a

Near Term Neoclassical Tearing Mode Studies to focus on avoidance techniques

- Data in hand to show limit on $\beta_p \sim 0.4$ -0.5 at high I_p
- Will study p(r) and q(ψ) dependence
- Will also study effect of reduced error fields and high temp. bake

– avoidance possible?

• Need n_e , T_e , T_i , v_{ϕ} , and q(r)with better spatial and time resolution for model

Gates, Fredrickson

Maingi

Coaxial Helicity Injection overview

- <u>500 kA, feedback control, add heating to CHI FY '02</u>
- <u>Startup and sustainment ~ 1s pulse FY '03</u>
- New capabilities
 - high temperature bake
 - EM noise pickup reduction
 - new feedback control algorithm
 - insulator upgrade: 8 cm long, high-field side end FY '02
 - edge reciprocating probe with dynamo tips \sim end FY '02
- Draft run time allocation 6 days
- Research topics
 - Flux closure studies
 - Feedback control
 - Adding CHI to Ohmic
 - Adding induction, HHFW to CHI

Flux closure assessment requires EFIT upgrades and more data

- EFIT upgrades underway
 - private-flux region current
 - SOL current
- Need Thomson data close to core
- Flux closure may be stimulated with new capabilities
 - most likely at high I_{tor}
 - highest I_{tor} requires good wall conditions to avoid absorber arcs (sets limit on injector flux ramp-down rate)
 - high temp. bake will help
 - increasing TF should help increase I_{tor}

= 🔘 NSTX ——

Begin testing feedback control of CHI discharges

- Start feedback control tests via CHI voltage and PF coil control
 - $-I_p$ control
 - R,Z position control
- Vary TF to control n=1 amplitude (and reconnection events - RE)
 - n=1 may be needed for flux closure RE's
 - smaller n=1 -> smaller RE?

Gates, Nelson²⁸

Adding CHI to ohmic discharges will use hardware upgrades

- Initial expts. saw I_p drop
 - Reduced this I_p drop by improving absorber field null and increasing upper δ
- Improved grounding for noise reduction in progress
 - EFIT analysis limited by noise
- Improved control of lower dome gas injection
- Need improved ohmic plasma target shape?

Adding ohmic to CHI discharges requires absorber modification

- Need high current plasmas for target
 - arc-free discharges at high I_{tor} are irreproducible
- Adding $V_{loop} > 2 V$ appears to trigger absorber arc
 - absorber null affected by OH fringing field
 - new insulator available in '03
 - extended to 8cm length from 1.5cm
 - located on HFS, similar to HIT-II
- Initial HHFW coupling studies can be done without insulator change

Boundary Physics overview

- Heat flux scaling FY '03
- Advanced PFC and density control end FY'03
- New capabilities
 - edge reciprocating probe, 2nd IR camera, divertor bolometry
 - 70 channel CHERs, 20 channel Thomson
 - high temperature bake, plasma boronization
 - inner wall gas fueling, density feedback
- Draft run time allocation 6 days
- Research topics
 - Heat flux scaling
 - SOL transport and core fueling studies
 - Wall Conditioning Studies

Heat Flux Scaling experiments will focus on density and source dependence, and power accountability

- Conduct experiments to help find 'missing power'
 - 2nd IR camera
 - new divertor bolometer
- Determine heat flux in Hmode discharges and lower density L-modes
- Measure effect of NBI vs RF heating on heat flux

Edge/SOL transport and core fueling studies will contribute to long-pulse PFC/density control decision point

- Divertor fluctuations with new camera
 - complements main chamber camera
- SOL transport with new edge reciprocating probe
 - role of fast, convective transport
 - main chamber recycling vs. divertor recycling
- Fueling efficiency of new inner wall gas injection system will be compared with low-field fueling and NBI

IW fueling improved H-mode performance on MAST

• Data-constrained edge plasma and neutrals modeling will be used to assess poloidal distribution of core fueling

Impact of high temperature bakeout and TMB fueling on wall conditions will be measured

• High-temperature bakeout should allow rapid vent recovery

- fiducial discharges

- Fueling with pure Tri-methyl borane (TMB) will be tested
 - replenish boron coating in 'real time'
 - improve performance?

NSTX Physics Analysis Plans and Tools (FY01-03)

FY01

FY02

FY03

RF/CHI Determine HHFW Heating/Current Drive Profiles

Ray tracing (CURRAY, HPRT) \rightarrow

Integrate into TRANSP \rightarrow

Full wave (TORIC, AORSA)

Study Effect of HHFW on Electron and Fast Ion Distributions

Develop self-consistent model \rightarrow

EBW Current Drive

Ram (theory) \rightarrow

Determine Flux Closure During CHI Startup

MFIT/ TSC \rightarrow EFIT, Develop theory/model for underlying physics \rightarrow

Boundary and

Divertor Determine Particle Transport Properties Inside Plasma

 $DEGAS \rightarrow$

Characterize Particle and Power Flux in SOL

UEDGE/DEGAS \rightarrow

Understand Edge Fluctuation Properties

BAL (linear), BOUT (non-linear) \rightarrow

Draft run time allocations for FY '02

HHFW heating & CD	FY 2001(actual)		FY 2002 (draft)	
	16 days	(24%)	12 days	(20%)
Transport	11 days	(17%)	9 days	(15%)
MHD	14 days	(21%)	9 days	(15%)
CHI	5 days	(8%)	6 days	(10%)
Boundary (heat flux)	1 day	(2%)	6 days	(10%)
Enabling/cross-cutting	18.5 days	(28%)	6 days	(10%)
Scientific Contingency	{13 days	(20%)}	12 days	(20%)

NSTX has an exciting set of experiments to execute this year!

• Plan driven by milestones and decision points

• Significant new facility and diagnostic capability

• Anticipate large number of quality experimental proposals

• But... hard pressed for run time