Scientific Relationship Between ST and BPX Tokamak, and an ICC (ST) Development Path A Discussion with PAC-12

Ray Fonck, Tom Jarboe, Martin Peng

- How does the vision for development of an ICC approach (such as ST) fit with an overall strategy which includes a near-term BP experiment (IGNITOR, FIRE, or ITER)?
 - Tightly coupled to an overall vision for fusion science and energy development
 - Science-based program with an energy goal
- Important to be consistent with recent planning for fusion energy science program
 - FESAC FES Program Strategy
 - Three components: Plasma Science, Innovation, International Fusion Energy Development Step (in U.S. or abroad)
 - FESAC Opportunities Documents (Knoxville)
 - SEAB
 - NRC

ST Development Can Benefit Greatly From Tokamak BPX & Complete the ST-Tokamak Science Basis for Optimized Fusion

- Roles of ST in FES Development
- ST synergy with Tokamak BP Experiment
- Role of ST in component testing
- Dimensionless parameters of ST & Tokamak scenarios
- "Magnetic Fusion Integration Test" (MFIT) Facility
- ST development path assuming a U.S. Tokamak BPX
- ST development path assuming international ITER

Two Roles for the ST as an ICC Approach - I

1) Broaden fusion plasma science basis

- Explore extreme of tokamak-like behavior near toroidicity limit
 - Verify predictive models for high temperature plasma behavior by testing them under a broader range of conditions
 - Transport and confinement, MHD, energetic particles,
 noninductive sustainment, edge physics, coupling between BS-driven equilibrium, stability, & confinement
- Cover new topics
 - Solenoid-free startup (similarly in ARIES-AT reactor concept), uniquely required
 - Discover new opportunities for fusion
- Extend scientific basis from tokamak to RFP-spheromak-FRC
 - ST occupies an intermediate parameter space in the selforganization continuum

Two Roles for the ST as an ICC Approach - II

2) Investigate innovative concepts for effective fusion energy development and application

- Develop a credible path for the ST approach to fusion power production and applications
 - Power production Physics and Technology: ST BPX, VNS
 - Demonstration of physics advantages
 - Requires PoP and PE physics database
 - Combines ST-AT parameter space to enable DEMO physics optimization

Note: Either role is sufficient justification for aggressive ICC R&D

- Plasma Science and Innovation components of the U.S. FES Program must maintain capability and flexibility to integrate new developments into an eventual optimized reactor concept
 - Choices get necessarily more constrained as capabilities grow in scale
 - Concept development is mandatory to maintain adequate flexibility

ST Synergy with a Near-Term Burning Plasma Experiment - I

General

- As a close relation to the tokamak, especially the AT, a strong overlap of scientific issues and capabilities exists between ST and tokamak-based BP developments
- This has enabled a more rapid progress of ST PoP research

What do ST's gain from a tokamak-based BP experiment?

- Paradigm development for a strongly coupled self-organizing plasma with self-heating in modest beta plasmas that leave the toroidal field relatively intact
 - Both intellectual and experimental
- Demonstration of self-heating in a burning plasma brings confidence in achieving burning plasmas in broader ICC parameter space
- Tests of predictive transport models in BP regime of modest beta and Alfvén number (v-flow/v-Alfvén)
- Fast-particle/MHD interactions with high trans-Alfvénic fast-particle population
- Fusion-environment diagnostic development for dielectric constant~1 plasmas
- Physical and intellectual infrastructure supports rapid development of ST-BP demonstration
 - A simpler ST BPX can plug into same site, power supplies, etc.
 - Tritium and remote handling experience can be shared

ST Synergy with a Near-Term Burning Plasma Experiment - II

What do ST's add to a Tokamak-based BP experiment

- Test and develop a broadened scientific basis for tokamak and AT-related physics issues
 - MHD control and understanding at much higher beta values ($\beta_0 \sim 1$) and stronger inout asymmetry
 - Tests of predictive models for beta-related MHD issues, including RWM, NTM, etc. under extreme toroidicity and large fractional Alfvén number
 - Exploration of supra-Alfvénic fast-particle interactions with MHD
 - RWM and close-fitting wall requirements at high q_0 (~2-3) and q_{95} (~10)
 - Transport tests with enhanced electromagnetic short wavelength fluctuations and suppressed electrostatic longer wavelength fluctuations
 - Energy and particle (especially alpha ash implications?)
 - Strong coupling between transport, heating, and equilibrium/stability with high BS fraction with strongly hollow J and monotonic q profiles
 - Develop concept for practical alpha-channeling via CAE's (or magnetosonic waves at sub-, trans-, and high-harmonic numbers)?
 - Wave-plasma-energetic particle interactions in over-dense plasmas (dielectric constant >> 1)
 - Solenoid-free initiation and rampup of plasma current with current hole
- Plasma control techniques development
 - e.g., pressure and current profile control with high bootstrap-drive fraction
 - Current drive techniques in over-dense plasmas
 - Fueling techniques in extreme in-out asymmetry plasmas with large magnetic well

Role of ST in Component Testing

- Required development of materials and technology components for the DEMO reactor
 - Assume IFMIF relevance for material samples tests (for ≤ 2 MW/m² in ~ 0.5 liter testing volume)
 - Consider ST-VNS relevance for high-availability component tests (for ~ 6 MW-yr/m² over ~10 m² testing wall area)

Dimensionless Parameters of ST & Tokamak Scenarios

	NSTX- MAST	<u>PE</u> Tokamaks	<u>PE</u> NSST	FED FIRE	FED ITER- FEAT	FED VNS	ARIES -AT	ARIES -ST
q ₉₅	10	5	10	4	4	10	4	10
К	2.5	2	2.5	2	2	3	2	>3
β_{T}	0.4	0.04	0.4	0.05	0.05	0.25	0.1	0.5
M _{Alfven}	0.3	0.05	0.3	0.01	0.01	0.3	0.01	0.3
a/ρ _i	35	200	100	400	1000	100	1000	140
B _p /B _t	1	0.1	1	0.1	0.1	1	0.1	1
V _{fast} /V _{Alfven}	4	1	4.4	1.6	1.6	5	1	5
$\omega_{pe}^{2}/\omega_{ce}^{2}$	100	1	100	1	1	100	1	100
M _{SOL}	≤ 4	≤ 1.5	≤ 3	≤ 1.5	≤ 1.5	≤ 4	≤ 1.5	≤ 4
f _{BS}	0.7	0.6	0.8	0.66	0.66	0.5	0.95	0.95

A U.S. Tokamak BP Experiment Could be Located in "Magnetic Fusion Integrated Test" (MFIT) Facility

Provide opportunity to ST (or other eligible ICC) to contribute to reactor realization

- Scale and cost of ICC BPX must contribute effectively to a flexible program plan
- Broadens the scientific basis (parameter space) for optimized DEMO

An attractive, flexible facility to allow ST plug-in

- Facilitates realization of low-cost ST path if supported by physics and engineering from PoP & PE tests
- Assume ~70% of cost in base site development facilities, power supplies, etc.
- Install "low-cost" ST in facility for BP experiment following initial tokamak BP experiments

Conceptual ST Development Roadmap Assuming a U.S. MFIT Facility

- Consider spherical torus as contributor to optimized DEMO via PE followed by FED (BP ST and/or VNS high availability components test facility)
- Need cost-effective ST (as all ICC) PE and FED steps
- ST path can contribute to multi-use Magnetic Fusion Integrated Test (MFIT) Facility (2010-2035) preceding DEMO ~2035
 - Start with tokamak/AT BPX (2010-2025)
 - In later stage, install an ST core in facility (2020-2035)
 - Multi-use facility allows accelerated development of new concepts at FED stage

Note: suggested timeline could readily be accelerated if funding available

ST Contributions to Fusion Energy Sciences Development

Conceptual ST Development Roadmap Assuming ITER-FEAT

- Consider spherical torus as contributor to optimized DEMO via PE experiment followed by VNS high availability components test facility
- Need cost-effective ST (as all ICC) PE and FED steps
- ST path can complement ITER-FEAT operation for 2015-2035 and start of DEMO ~2035
 - PE Next Step ST (NSST, up to 10 MA level) at a low cost site (2010-2020)
 - FED step via a VNS at a nuclear site (2020-2035)
 - PE NSST + ITER-FEAT \Rightarrow basis for physics optimization of DEMO
 - VNS + IFMIF + ITER-FEAT-U ⇒ basis for technology optimization of DEMO
 - Multiple fusion sites assuming broad international stakeholders
- ITER-FEAT could be upgraded to an integrated test facility

(for $\sim 0.1 \Rightarrow 1 \text{ MW-yr/m}^2 \text{ over } \sim 20 \text{ m}^2 \text{ testing wall area}$)

ST Development Can Benefit Greatly From Tokamak BPX & Complete the ST-Tokamak Science Basis for Optimized Fusion

ST (ICC) has two roles

- Broaden fusion plasma science basis
- Develop innovation for effective fusion energy development

Strong synergy with Tokamak BPX

- Benefits from Tokamak science and a Tokamak BPX
- Expands the ST-Tokamak parameter space, add strongly to BP physics
- Can fit into a U.S. MFIT Facility
- Can provide high-availability VNS

ST development can fit either ITER-FEAT (international), FIRE (US), or IGNITOR (Italy)

- Requires cost-effective ST PE and FED steps
- PE NSST + ITER-FEAT ⇒ basis for physics optimization of DEMO
- VNS + IFMIF + ITER-FEAT ⇒ basis for technology optimization of DEMO

Helps define the long-term goals of ST research