

Highlights of FY'02 Experiments

M.G. Bell

presented on behalf of R. Maingi, FY'02 Run Coordinator and the NSTX Research Team NSTX PAC-13, Sep 30 – Oct 1, 2002

Further Improvements in Capability Benefited Research in FY'02

Parameters	<u>Design</u>	Achieved (FY'02)
PFC bakeout	350°C	350°C
Gas fueling	LFS	HFS
Aspect ratio	1.27	1.27
Elongation	2.2	2.5
Triangularity	0.6	0.8
Plasma Current	1MA	1.4MA
Toroidal Field	0.6T	0.6T
Heating and Current Drive		
Induction	0.6Vs	0.6Vs
NBI (100kV)	5MW	7 MW
HHFW (30MHz)	6MW	6 MW
CHI	0.5MA	0.4MA
Pulse Length	5s	1s

New and Upgraded Diagnostics Also Facilitated Detailed Experiments

- 20 channel MPTS at 2 × 30 Hz
- Spatial scanning capability for NPA
- Fast Reciprocating Probe for edge studies
- 2 channel interferometer/polarimeter (FIReTIP)
- Fast and ultra-fast visible cameras for edge fluctuations
- Microwave reflectometers for edge, core fluctuations
- 2-D gas-electron-multiplier x-ray detector
- Prototype divertor bolometer (4 ch)
- Fast Mirnov channels
- Routine "partial kinetic" EFIT analysis
 - measured diamagnetism & pressure profile shape from MPTS
- Between-shots analysis of stability with DCON
 - RWM detection and correlation with rotation slowdown

20-Channel T_e Profiles Reveal New Structure

NSTX PAC-13 / 020930 / MGB

FY'02 Research Organized Into Six Experimental Task (ET) Groups

• MHD

- Jon Menard, Eric Fredrickson
- HHFW/EBW
 - Randy Wilson, David Swain [ORNL]
- Transport & Turbulence
 - Doug Darrow, Dan Stutman [JHU]
- Boundary Physics
 - Henry Kugel, Charles Bush [ORNL]
- Coaxial Helicity Injection
 - Roger Raman [UW], Dennis Mueller
- Integrated Scenario Development
 - David Gates, Steve Sabbagh [CU]

Run Coordinators: Rajesh Maingi [ORNL], Stan Kaye

Achieved Substantial Progress in β_T

Also Produced Highest Stored Energy and $\beta_T \times \tau_E$

- Achieved $\beta_N \times H_{89L} > 12$ for $8 \times \tau_E$
- Higher B_T decreases β but lengthens pulse *D. Gates , R. Maingi*

Factors Contributing to Sustained Higher β_N Operation

- Reduction of static error field
 - Realignment of PF5 coils reduced n = 1 component by factor
 >10 across most of profile
 - Reduced incidence of locked modes at low β
 - May have reduced rotation damping
- Maintaining $q_{min} > 1$ for longer
 - Caveat: conclusion based on EFIT q profiles
 - Previous high- β plasmas collapsed when $q_{min} \leq 1$
 - Maintaining $q_{min} > 2$ at higher B_T decreases rotation damping
- H-mode broadened profiles
 - $F_p = p(0)/\langle p \rangle < 1.9$ (EFIT)
 - Full kinetic (p_e , p_i , p_{fi}) analyses underway to confirm

Analysis Shows Wall Stabilization Effective with Sufficient Rotation

NSTX PAC-13 / 020930 / MGB

12

Created Diamagnetic Plasma With $\beta_N/l_i = 10$

$$|I_{\text{non-ind}}/I_{\text{p}} = 0.6$$

$$|I_{\text{bootstrap}}/I_{\text{p}} = 0.42 \text{ (at 0.5s)}$$

$$J. Menard, S. Sabbagh$$

NSTX PAC-13 / 020930 / MGB

Achieved 0.8MA Pulse with 1s Duration, 0.7s Flattop

- $B_T = 0.5T$ to 0.95s
- NB-A,B 100kV NB-C 80kV
 - Extra current drive appears beneficial
- W_{tot} collapses by 0.75s in all similar shots
 - -largely internal

J. Menard

Conducted a Similarity Experiment with DIII-D on Alfvén Modes

W. Heidbrink

- Matched NSTX field and shape in DIII-D
 - $B_T = 0.5T not fully optimized in DIII-D$
- Similar NB systems

 \Rightarrow match v_{beam}/v_{Alfvén}

 Study R-dependence of threshold, dominant mode numbers

- Toroidal mode number higher in DIII-D than NSTX
 - Expected from theory
- Analyzing threshold dependence on $\beta_{\text{fast-ion}}$
- Observe other high-frequency features in NSTX spectrum

Observed New Bursting Instability in TAE Range

- Accompanied by fast-ion losses and H_{α} spikes
- Most evident in H-mode plasmas with q(0) > 1
 - First bursts can precede H-mode transition

Multiple modes burst at same time

NSTX PAC-13 / 020930 / MGB

New Fishbone Instability Identified

E. Fredrickson

- Theory suggests instability driven by trapped ions with large bounce angle
- Range of mode frequencies suggests resonance with bounce frequency of lower energy beam ions
 - Calculate bounce frequencies for fast ion distribution modeled by TRANSP
 - No effect of bursts on neutron rate

Global Confinement Continues to Exceed Conventional Scalings

- Magnetic data only (EFIT01)
- Include Ohmic and injected NB power
 - No RF heated discharges in this data set
- Data from near maximum in stored energy

Exclude highly transient discharges

Single parameter scans reveal intriguing trends

Weak Dependence on I_p Observed in Transient Plasmas With Rising W_{tot}

P_{NB} Scans Reveal Complex Dependence on B_T

Upgraded, Recalibrated Thomson Scattering Data Available for Kinetic Analysis

- Spectral recalibration resulted in higher T_e
 - -Most significant at lower T_e
 - -Now agrees with reanalyzed x-ray line ratio data
- Spatial recalibration resulted in slightly broader profile
- Line-integral density from MPTS agrees with interferometer

Progress in CHERS T_i Calibration and Analysis

- *In situ* calibration of spectrometer instrumental function using neon glow in vacuum vessel
- Spatial recalibration of main and background viewing arrays when vacuum vessel opened
- Gained understanding of spatial and temporal variation of background light
 - Role of specular reflections from NB armor
 - Reduced T_i in region r/a ≈ 0.6
- Final analysis now proceeding
 - Prioritized by needs for IAEA, APS meetings
- Additional manpower on installation of upgrade CHERS system from new postdoc.

Example of T_i, v_{phi} Profiles from Recalibrated, Reanalyzed CHERS Data

Recalibration of T_i, T_e Will Permit Reanalysis of Local Power Balance

 With new T_e data, neutron decay rate after NB blips is very well modeled by TRANSP

- $T_e \uparrow, T_i \downarrow \Rightarrow reduced P_{ie} \propto n_e^2 (T_i T_e) / T_e^{3/2}$
- Beginning reanalysis with new T_i data

Evolution of X-ray Profiles After Neon Injection Yields Trends in Particle Transport

- Filtered USXR arrays distinguish partially and fully stripped Ne
- Time-dependent analysis with MIST code allows fit for D_{Ne}
 - Solution may not be unique but trends are evident

Reduced edge diffusivity since error field reduced

Correlation Reflectometer Reveals Complementary Change in Fluctuations

Correlation length scales

with gyroradius $\rho_s \propto B^{-1}$

- Two-channel swept-frequency reflectometer measures correlation decay length of density fluctuations
- Measures few cm inside the LCFS: 0.90 < r/a < 0.98

Data for I_p, B_T scan at const. q_{cvl}

Improved Reproducibility of H-mode with HFS Gas Fueling but Comparable Performance

HFS injector gives

 large initial flow
 continuing lower
 flow through pulse

 LFS fueling with

- rate similar to HFS produces
- -Delayed transition
- -Shorter H phase

Threshold Power Approaching Revised ITER Scaling Including Aspect-Ratio

- Comparison with reanalysis of ITER database including A^{-0.46} dependence (Snipes, to be published)
- NSTX data includes >500 shots since 350°C bakeout

H-modes obtained for:

- Lower-single-null (LSN) & double-null (DN) divertor
- NBI and/or RF heating
- P_{NBI}: 0.3 7 MW
- I_p: 0.7-1.3 MA
- B_T: 0.3 0.6 T
- n_e : 1.5 4.8 × 10¹⁹m⁻³ (transition)
- Duration: >0.5s

Upgraded Gas Puff Imaging Diagnostic Yielded Wealth of Data on Edge Turbulence

R. Maqueda, S. Zweben

- Used PSI-4 camera (*Princeton Scientific Instruments*)
 28 frames, 160 × 80 pixels, 100000 frames/s, 10µs exposure
- Filters for observing He, D₂, Ar puffs from line source

H-mode

(108316)

L-mode (108609)

NSTX PAC-13 / 020930 / MGB

Fast Camera Images Show 3-D Structures in Divertor D_{α} Emission

- Used very fast camera (40,500 fps)
- Vertical view of lower divertor
- Observes bright structures elongated along field lines

Images through a grassy ELM in an H-mode discharge

Before

During

After

109069

H. Nishino, U. Hiroshima

NSTX PAC-13 / 020930 / MGB

Propagation of GPI "Blobs" Varies with Confinement Mode

- Developed algorithms to track blobs automatically
 - In H-mode, blobs propagate mainly poloidally
 - In L-mode (including OH), there is outward radial motion

Broad Scrape-off Measured with Fast Reciprocating Probe

- Probe plunges in 100ms up to 4cm inside LCFS (EFIT)
- Measure T_e , n_e , V_f profiles and fluctuations to 1MHz

• Scrape-off appears to steepen in H-mode phases

Probe Did Not Detect E_r Shear Layer Associated With H-mode Edge Barrier

- Shear layer may be further inside LCFS or
- May be an error in LCFS position from EFIT or
- Transport barrier physics may be different

J. Boedo

Peak Heat Flux to Divertor Tiles Higher in L-mode than H-mode

Technical Aspects of HHFW Performance

- Full phase feedback system worked very well
 Phases set to arbitrary waveforms between shots
- Power limited to < 3MW throughout run
- During opening, arcing found in all feedthroughs
 - Repairing and modifying center conductors to reduce electrical stress

HHFW Needs Effective Heating to Produce Current Drive

 Compare measured plasma energy increase with ITER scaling for

$$I_p=0.5MA, B_T=0.45T, H=1$$

- Heating quite variable
- Not yet as effective as NBI which exceeds ITER scaling
- CD antenna phasings produce k_{||} ≈ ±7m⁻¹
 - \Rightarrow T_e(0) ~1.2keV for optimum wave coupling

Current Drive Experiment Matched Plasma Conditions with Co/Counter RF Phasings

Different RF powers required to reach similar central T_e and n_e

P. Ryan

Evidence for Current Drive in Change in Loop Voltage to Maintain Same I_p

- Current drive indicated but
- Difficult to interpret because steady-state not reached
- Magnitude uncertain
- Modeling results
 - –150 kA from zero-D
 - -230 kA from CURRAY
 - -90 kA from TRANSP

Detailed Study of Fast Ion Interaction with HHFW using Scanning NPA

- Performed scans in B_T , I_p , V_{NB} , k_{\parallel}
- Analyzing data with HPRT and upgraded METS codes
 - Assess implications for combined HHFW/NB heating scenarios

NSTX PAC-13 / 020930 / MGB

A. Rosenberg, S. Medley

CHI Experiments Encountered Technical Problems

- 1. Conduct experiments at higher TF
 - increase toroidal current
 - study effect on n=1 mode amplitude and frequency
 - flashovers in external circuit terminated runs
 - propagated voltage transients into ancillary equipment
- 2. Measure edge driven current
 - add CHI to a LSN inductive discharge
 - noise pick-up in magnetics disrupted operation
- 3. Implement feedback control of CHI plasma
 - sustain plasma shape during high current phase
 - postponed until FY03

CHI Hardware Modification Now Underway

- Redesigned snubber circuits to suppress voltage excursions in external circuit
 - Based on HIT-II and DIII-D experience
- Improved absorber with long ceramic insulator
 - similar to successful HIT-II design
- Absorber field control PF coils being installed
 - Design and construction of fast chopper power supplies at University of Washington
- Working on plasma control system to be able to implement CHI control

We made excellent progress!

- New facility and diagnostic capabilities added
 - Routine H-mode operation
 - Detailed profile measurements
 - Beginning fluctuation studies
- Broadened operating space and increased pulse length
- Significantly increased β and studied associated MHD
 - $-\beta_T, \beta_N, \beta_P, \beta_T \tau_E, \beta_N H, W_{tot}$ reached new levels
 - Detailed studies of RWM and fast-particle modes
- Explored transport in several regimes
 - Global confinement continues to show interesting trends
 - Profile data under analysis now for fall meetings
- First indications of current drive by HHFW

We look forward to a very productive run in FY'03