

Research Opportunities and Experimental Plan for FY2003

S. M. Kaye for the NSTX Research Team PPPL, Princeton Univ.

NSTX PAC-13 Meeting Princeton, N.J. Sept 30-Oct. 1 2002

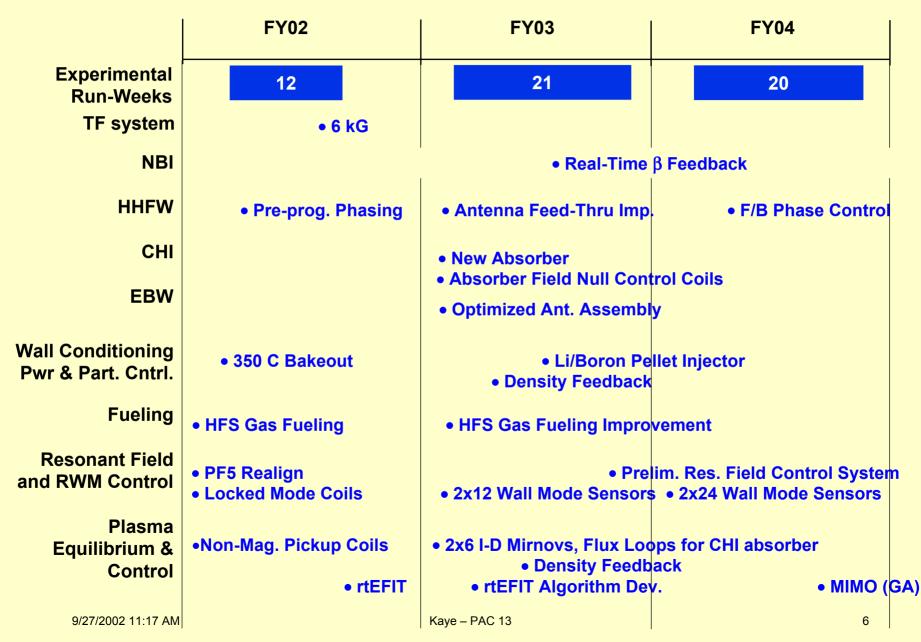
Outline

- Planning process
 - Milestones and relation to IPPA goals
 - New facility and diagnostic capabilities
- Topical area research program organized by ETs
 - Heating and Current Drive (Taylor, Ryan)
 - Co-Axial Helicity Injection (M. Bell, Raman)
 - MHD (Sabbagh, Gates)
 - Transport and Turbulence (LeBlanc, Darrow)
 - Boundary Physics (Kugel, Kaita)
 - Integrated Scenario Development (Maingi, Menard)
- Program emphasis and research plan logic

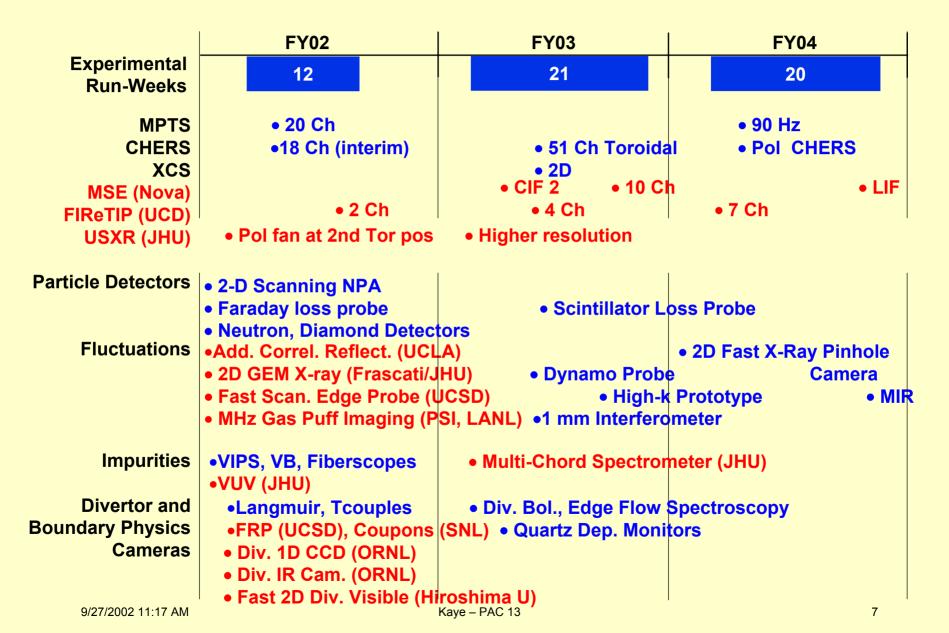
Program Planning Steps

- PAC-12 (2/02)
- FWP (3/02)
- NSTX Results and Theory Review (9/02)
- NSTX Research Forum (9/02)
- PAC Input (9-10/02)
- Refinement of run plan (10-11/02)
- Beginning of FY03 run (12/02)
- Initial Presidential budget guidance 21 run weeks in FY03

FY03 Milestones Help Drive Research Prioritization


- High- β and τ_{E} for $\Delta t > \tau_{E}$ (IPPA 3.2.1.6)
- Non-inductive current drive to assist in startup and sustainment of ≥ 1 sec pulses (IPPA 3.2.1.2)
- Interactions among resonant error field (REF) response, correction fields and rotation (IPPA 3.2.1.4)
- Edge heat flux dispersion and effect of PFC at high power (IPPA 3.2.1.5)
- Requirements for EBW heating and current drive (IPPA 3.2.1.3)
- Persistent CHI produced currents and coupling to other CD techniques (IPPA 3.2.1.4)

FY04 Milestones

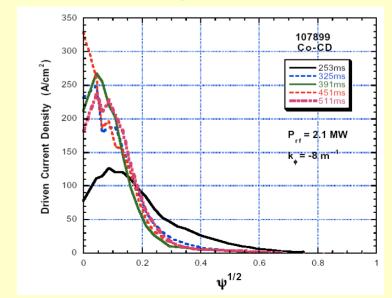


- Avoid/suppress β-limiting modes (IPPA 3.2.1.2)
- Measure j(r) modifications from non-inductive CD (IPPA 3.2.1.4)
- Long- λ turbulence in plasma core (IPPA 3.2.1.1)
- Energetic particle/wave interactions (IPPA 3.2.1.3)
- Edge heat flux at high- β_T , τ_E (IPPA 3.2.1.5)

NSTX Facility Plan (•)

NSTX Diagnostics Implementation Plan (FY02-04) * collaborator diagnostics in red

Heating and Current Drive Research Directly Related to NSTX Milestones


- Research Topics
 - RF wave physics
 - Absorption and deposition, parasitic effects
 - Plasma confinement
 - Electron heating
 - Non-inductive current drive
 - EBW mode conversion studies
- System modifications and new capabilities
 - HHFW antenna modified to increase voltage/power limit
 - New EBW antenna assembly
 - Radially moving B/N limiters
 - Reflectometer
 - Local gas feed
 - MSE, FIRETIP polarimetry, sFLIP

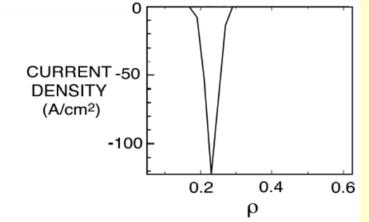
HHFW Heating Experiments and Modeling Will Help Us Understand RF Wave Physics

- System shakedown to achieve maximum power
 - Develop antenna conditioning techniques
 - Develop startup scenarios to optimize coupling to plasma
- Establish deposition control for electron heating
 - Vary gaps, antenna phasing, go to high density
- Obtain H-mode at 800 kA
 - HHFW good tool for probing power threshold
 - HHFW/NBI comparisons to assess effect of rotation
- Continue to develop HHFW modeling tools
 - CURRAY (Mau), HPRT (Menard) ray tracing
 - TORIC (Bonoli), METS (Phillips) full wave
 - CURRAY, TORIC incorporated into TRANSP

HHFW Current Drive

- Antenna modifications will allow increase in power
- Use HHFWCD to help increase pulse length to 1 sec
 - Explore HHFW startup with large bore, low density plasmas
 - Improve plasma position control to maintain good coupling
 - Avoid MHD using different I_p ramp rates, RF turn-on times
- Operate at higher density (5x10¹⁹ m⁻³) for off-axis CD
- Measure driven current with MSE, FIRETIP polarimetry
- Compare measured j_{CD}(r) to model calculations

Curray CD Calcs


[Mau]

Interactions Between HHFW and NB Fast Ions Can Be Strong

- Extend experiments to understand nature of fast ion acceleration during HHFW (A. Rosenberg, PhD Thesis)
 - Resolve dependence of interaction wrt HHFW phasing
 - Estimate power in tail
 - Higher RF power
 - sFLIP, scanning NPA

EBW Emission Experiments Will Establish Basis for High Power H&CD System

- Demonstrate >80% B-X and/or B-X-O conversion
 - Use B/N limiters to reduce L_n and increase conversion efficiency
 - ORNL reflectometer to measure L_n
 - Local gas feed to ensure adequate density
- Complete GENRAY/CQL3D heating and current drive scoping study

β_T=12%

CD efficiency is 0.1 A/W (comparable to ECCD) with 100% mode conversion

CD accessibility more limited at higher β_{T}

- [Taylor, Harvey]
- EBWCD possible tool for NTM stabilization

Heating & CD Research Addresses Project Milestones

(D) ~ STX-----

Electron heating

HHFW startup Fast ion/RF interactions Electron heating HHFW CD

Rotation effects (wrt/ NBI)

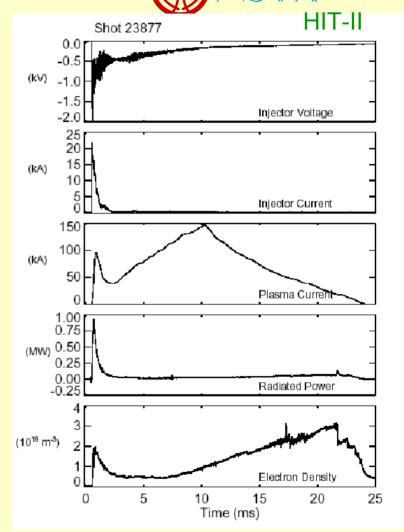
EBW mode conversion studies

High β_T , τ_E for long duration

Quasi-steady 1 sec discharges using NICD

REF Response,

Correction Fields and Rotation

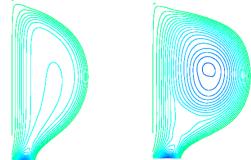

EBW H&CD requirements

CHI Provides Means for Non-Inductive Startup

- Research Goals
 - Demonstrate persistent toroidal current and closed poloidal flux
 - Extend to higher toroidal current and couple to other current drive schemes
 - Add CHI edge current drive to Ohmic plasmas
- CHI hardware modifications and new capabilities
 - Components/electronics related to noise and arcing redesigned
 - New, long ceramic insulator
 - PF absorber field control coils
 - Dynamo probe head to measure helicity transport

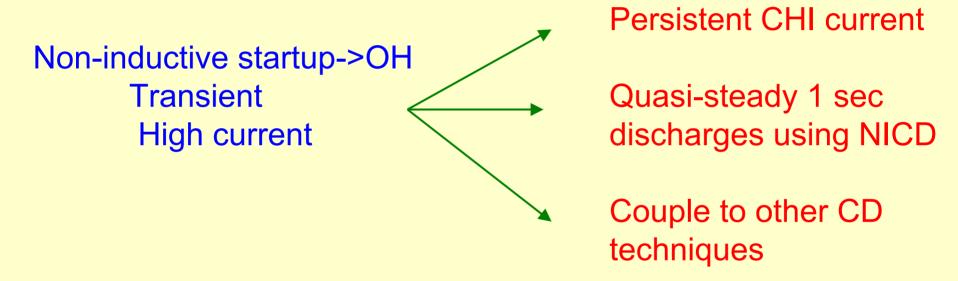
Employ Short Pulse Startup Scenario Developed on HIT-II

- Successful coupling to OH
- For NSTX
 - I_{inj}~10-30 kA for 10-30 msec
 - Minimally perturbing
 - Determine poloidal flux savings
 - Need to develop short pulse scenario
 - PF1b
 - I_{inj}(t)
 - Gas feed rate



[Raman, Jarboe, Nelson]

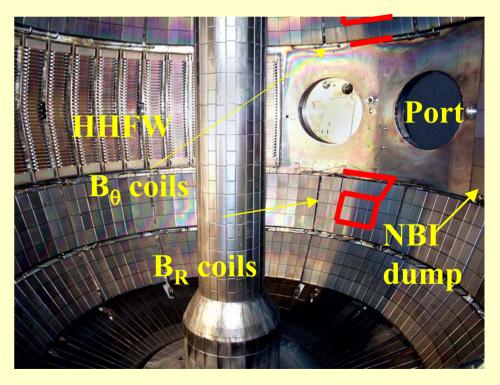
Improvments to CHI System Should Allow Operation at High Toroidal Current (≥400 kA)


- Develop extended CHI pulse
 - New absorber
 - Absorber field control coils
 - Control system development
- Demonstrate flux closure in most favorable conditions
 - Magnetic fluctuations
 - Kinetic profiles (USXR, MPTS)
 - Equilibrium reconstruction and modeling
- Couple high current CHI-initiated plasma to other current drive schemes (OH, HHFWCD)

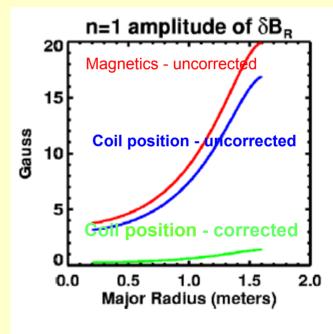
CHI Modeling Effort Spans Wide Range of **Approaches ESC: Equilibrium reconstruction** I == .0452 I == .0452 (Zakharov) E=-5e-12 L=-4e-12 F=--8447 **EFIT: Equilibrium reconstruction** ٠ (Lao, Schaffer) **TSC:** Dynamic simulation code ٠ (Jardin) 3DMHD: 3D equil. and non-linear ٠ stability code (Tang)

CHI Research Addresses Project Milestones

High current startup


Demonstrate flux closure

MHD Research Topics

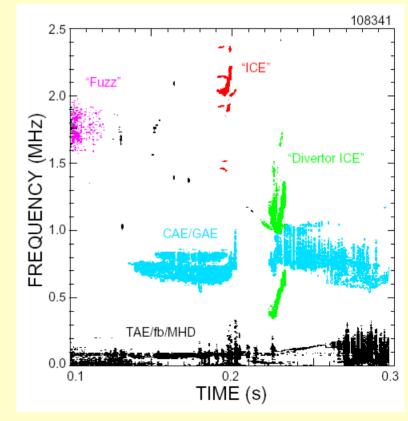

- Research Topics
 - Error field resonance studies
 - Effect of rotation on modes
 - RWM, core and edge (ELM) disruption physics
 - Fast-ion driven MHD modes
- New capabilities
 - Divertor Mirnov array
 - RWM sensors (12 B_p , 12 B_r)
 - EF/RWM control coils
 - MSE (2->10 channels)
 - 1 mm interferometer/polarimeter

[Menard, Sabbagh, ...]

Error Field Resonance, Correction Coils and Rotation Physics

- PF5 realignment led to a significant reduction in error field, clear locked mode threshold
- Calibrate new internal RWM/EF sensors with external LM sensors
- Identify regimes w/o modes at low density
- Study effects of rotation on mode
 - NBI pulses to change plasma rotation
- Study EF amplification
 - Approach no-wall limit at low density
 - Look for appearance of LM
- Study NTM physics at reduced EF
- Assess preliminary EF/RWM control system

[Menard]

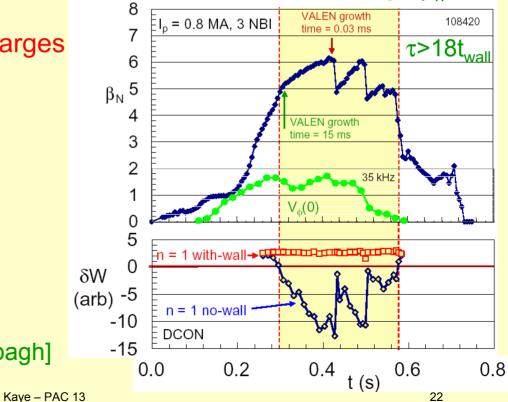

Assess Impact of Fast Ion Instability Drive

- Extend study of "*AE" modes, fishbones, and their impact on ST plasmas
 - Measure high-f MHD
 - Complete comparison to ATs through similarity experiments (NSTX/DIII-D)

- Determine amplitude and extent of CAE modes using core reflectometry/polarimetry
 - Implications for stochastic heating

Modes up to 15 MHz inferred

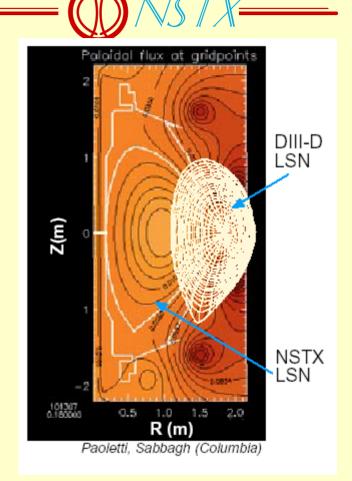
[Fredrickson]


Study stabilization physics of RWM at high- β_n

- NSTX plasmas operate significantly above no-wall limit
 - RWM/rotation damping physics important in this regime

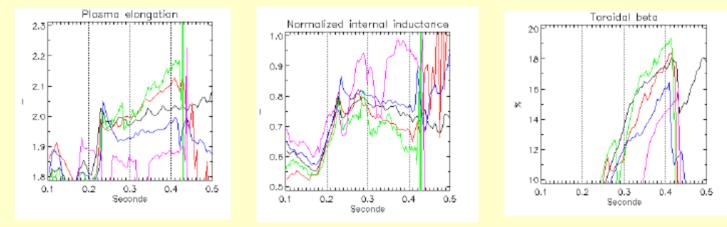
[Sabbagh]

- Maintain RWM-stabilized discharges for longer durations
 - Effectiveness of passive stabilization at high β_n
 - Real-time β -feedback
- Critical rotation frequency, dependence of v_{ϕ} on q_{min}


Passive stabilization may lose effectiveness at high β_n

RWM Physics (cont'd)

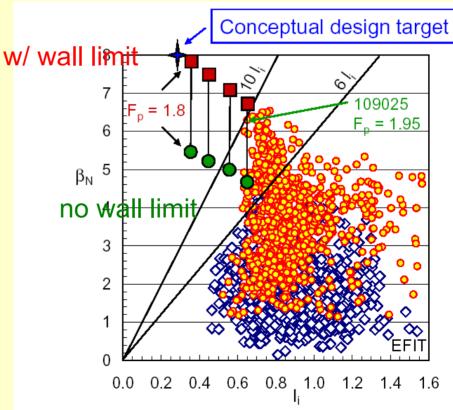
- Determine R/a effects on RWM
 - NSTX/MAST, NSTX/DIII-D similarity experiments


- Rotation damping physics of RWM (Zhao, proposed PhD dissertation topic)
 - Conduct experiments to vary key physics parameters in RWM rotation damping theories

[Sabbagh, Synakowski]

Enhanced Shaping Offers Possibility to Further Increase β_T

- High- β_T (\leq 34%) obtained in high- δ discharges
- Strong shaping generally leads to lower *I_i*, higher q_{min}


[Menard]

- Increase κ to 2.2-2.3 in 800 kA LSN
 - Probe stability limits wrt no-wall and wall limits
- Scan δ at high κ in DND and LSN
 - Look also for ELM trigger physics

A Stable Path to the Research Goal of β_T =40% Exists

 Strong shaping to lower *I_i* and raise q_{min}, as well as maintaining broad pressure profiles, are key to attaining target

- Maintain/lower F_p to demonstrate trend towards optimized target
 - H-modes
 - Fueling
 - HHFW

[Paoletti]

MHD Research Addresses Project Milestones

Error field resonance, control Effect of rotation RWM studies Strong shaping Fast ion driven instabilities ELM physics

Real-time β-feedback (cross-cutting w/ ISD) Strong shaping ELM physics

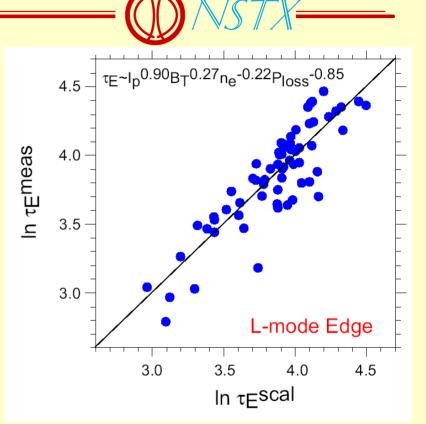
Locked mode/RWM studies

High β_T , τ_E for long duration

Quasi-steady 1 sec discharges using NICD

REF Response, Correction Fields and Rotation

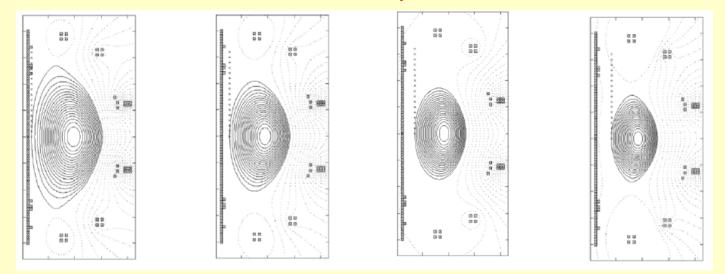
NSTX Offers the Potential for Uncovering New Transport Physics



- Research Topics
 - Parametric dependence of confinement
 - Role of aspect ratio
 - Dependence of $\tau_{\rm E}$ on β
 - Electromagnetic effects, e^{-} physics as β_{T} approaches unity
 - Local transport properties
 - Role of electron vs ion confinement
 - Role of rotation and rotational shear
 - Characterize fluctuations
 - Fast ion heating and confinement
- New capabilities
 - 51 point toroidal CHERS
 - Correlation reflectometry
 - MSE
 - 4 channel FIRETIP
 - sFLIP

Determine Parametric Dependences of τ_E

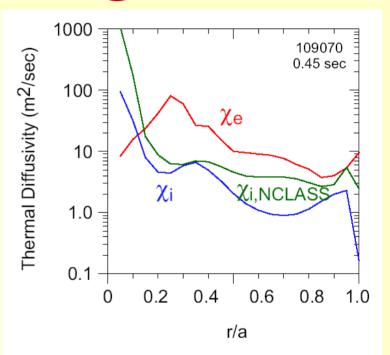
Differences between results from single parameter scans (Stutman) and statistical analysis exist


- Extend scaling studies
 - Resolve parametric dependences
 - Dynamic vs steady-state behavior
 - Configuration and shape, H(s-s) vs non-H
 - Dimensionless scalings in β , ρ^*
 - P_{thresh} scalings, H-mode fueling

[Kaye]

Effect of Aspect Ratio Can Be Determined From Intra- or Inter-Machine Experiments

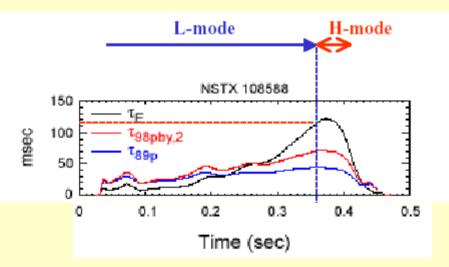
• Within NSTX, A=1.25-2 (at fixed q_{cvl})

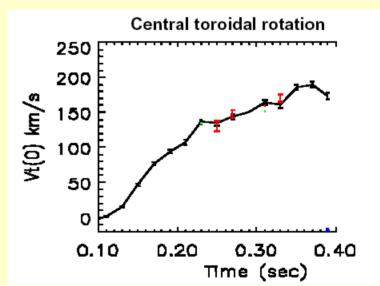

[Kaye, Paoletti]

- Connect to other ST (NSTX/MAST)
- NSTX/DIII-D similarity experiment
- Similarity experiments cross-over research topics
 - T&T, RWM physics, TAE-mode physics, edge transport

Assessment of Local Transport Properties are Crucial Part of All Scaling Studies

- Recalibration of MPTS & CHERS (and new CHERS) allows for routine transport analysis of discharges
 - Local transport reanalysis just starting
 - Determine if T_i/T_e anomaly still exists

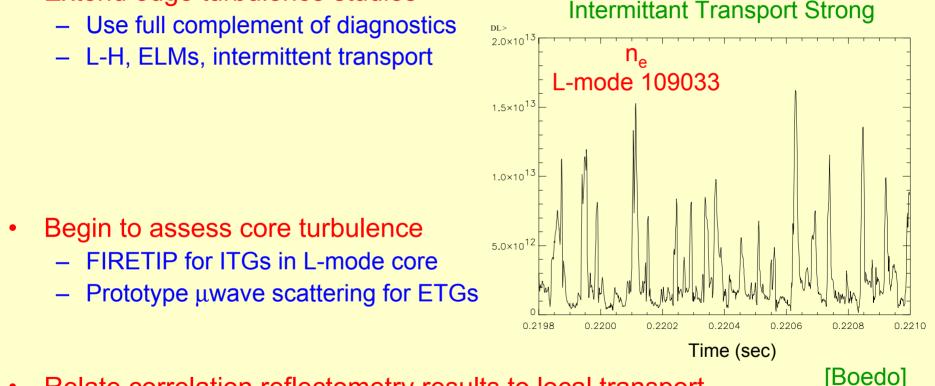

- Determine importance of electron vs ion loss channel
 - Impurity injection/pellets for "ion" transport
 - GS2, GYRO; linear and non-linear
- Global and local scaling results will form NSTX basis for ST confinement database (NSTX/MAST)
 - Plan to populate database this year



[Kaye, R. Bell, LeBlanc,..]

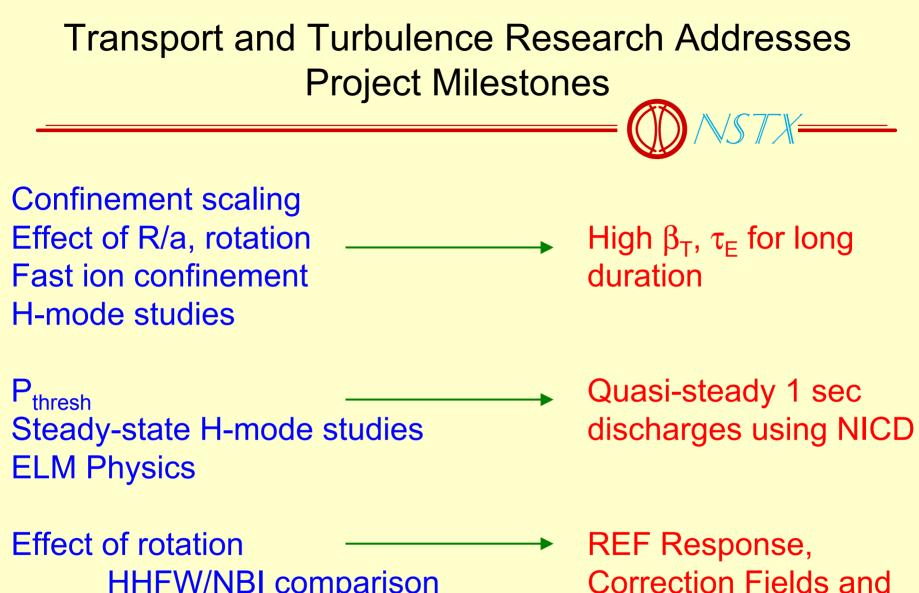
Determine the Relation Between Rotation and Confinement

- () NSTX-----
- Monotonic increase of $\tau_{\rm E}$ associated with monotonic increase in rotation causality?



[Stutman, R. Bell, Kaye]

- HHFW vs NBI transport
 - Vary NBI source
- Momentum transport studies


9/27/2002 11:17 AM

Characterizing Fluctuations Will Help Identify Underlying Transport Physics

 Relate correlation reflectometry results to local transport properties

Extend edge turbulence studies

HHFW/NBI comparison Momentum transport Vary NBI sources

9/27/2002 11:17 AM

Rotation

Boundary Physics

- Research Topics
 - Edge heat flux dispersion
 - Understand ST edge
 - Density control
- New capabilities
 - Li/B pellet injector
 - Hot surface boronization
 - Fast reciprocating probe
 - Divertor bolometer, fast divertor camera, fast divertor IR camera

Heat Flux Scaling Addresses NSTX Milestone Directly

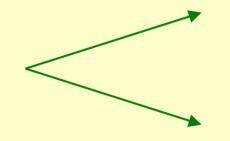
- High heat loads expected and measured
 - Potentially limiting for multi-sec pulse length
 - Big issue for next step ST
- Understand heat flux scaling and power accountability
 - Quasi-steady heat flux vs I_p, n_e, P_{heat}
 - Compare H- and non-H-modes
 - Measure in/out ratios in SN and DN configurations
 - Detailed characterization of edge for SOL transport studies
 - NSTX/MAST ST comparative study
 - Measurements will be compared with UEDGE calculations
- Test methods for reducing heat flux
 - X-point sweeping
 - Divertor detachment using D₂ puff

Density Control A Key Issue For Long Pulse Discharges

- Density typically continued to rise throughout high confinement/performance discharges
 - Is this a fueling or a transport issue?
- Wall conditioning techniques for controlling density
 - Helium discharge conditioning
 - Boron and Lithium pellet injection
 - Improved boronization/TMB fueling
- Other techniques
 - HFS gas fueling improvements
 - ELMs
 - Central electron heating

Boundary Research Addresses Project Milestones

Heat flux scaling **Edge characterization** Heat flux reduction

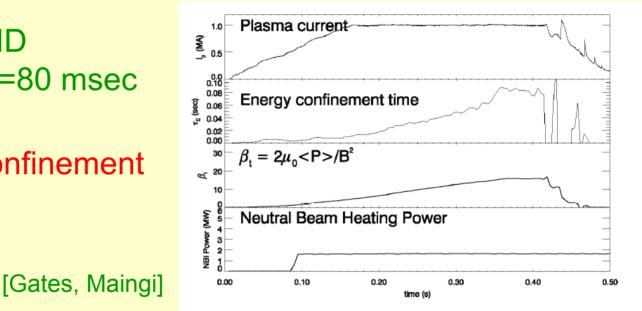

Edge heat flux dispersion and effect on PFC at high power

Quasi-steady 1 sec discharges using NICD

High β_{T} , τ_{F} for long duration

Wall conditioning

Density control Heat flux reduction

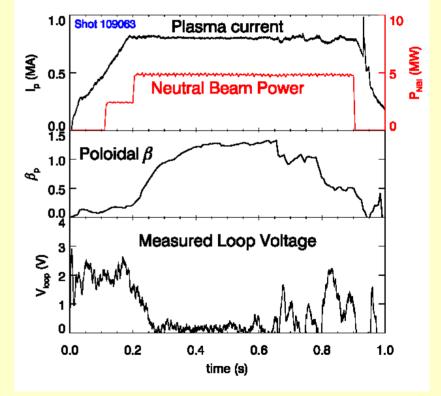

ISD Research Will Focus on Producing High Performance Plasmas Using Various Control Techniques

- Research Topics
 - Simultaneous high- β_T and high τ_E for long duration
 - Produce quasi-steady 1 sec pulses using non-ind. CD
 - NBI/HHFW compatibility
- New capabilities
 - rtEFIT shape control: dedicated time for algorithm development
 - MIMO validation (GA): FY04+ implementation
 - Density feedback
 - Wall conditioning
 - Impurity fueling control
 - NBI control for β -feedback

$\begin{array}{l} \text{High-}\beta_{\mathsf{T}}\tau_{\mathsf{E}} \text{ Discharges Produced in High-}\delta \text{ DND} \\ \text{H-mode Discharges} \end{array}$

High- δ DND 1 MA, β_T =17%, τ_E =80 msec

• MHD limits confinement


- Will attempt improved ramp-up to delay MHD
 - Higher q_{min}
- Attempt to combine ITB with H-mode
 - Improve $\tau_{\rm E}$ through Li pellet injection
 - Plug electron loss channel

Current Profile Control is Key to Developing Long-Pulse Discharges

- H_{97L}>2, >50% non-ind. CD
- Core disruptions as p-profile evolves and q_{min} drops

- Attempt to raise q_{min}, lower flux consumption
 - Raise κ in LSN (increase q, f_{BS})
 - Faster I_p ramp in high- δ DND
 - Early HHFW heating to raise T_e
 - PF only startup

- Long-pulse issues
 - Density control (improved HFS gas feed, wall conditioning)
 - Divertor heat flux (potential)

[Menard]

ISD Research Addresses Project Milestones

Plasma control system development

Couple CHI to other CD schemes

Optimize/maintain j(r), p(r) - f_{bs}, q_{min}

HHFW/NBI compatibility Plasma control system development Quasi-steady 1 sec discharges using NICD

High β_T , τ_E for long duration

Draft run time allocations for FY '03

	NSTX
--	------

	FY 2002(actual)		FY 2003 (draft)	
HHFW heating & CD	12 days	(19%)	15 days	(14%)
CHI	3 days	(5%)	15 days	(14%)
Transport	13 days	(21%)	13 days	(12%)
MHD	12 days	(19%)	13 days	(12%)
ISD	10 days	(16%)	13 days	(12%)
Boundary (heat flux)	5 days	(8%)	8 days	(8%)
Enabling/cross-cutting	7 days	(11%)	10 days	(10%)
Scientific Contingency	{13 days	(20%)}	18 days	(17%)

Research Plan Logic – Temporal Progression of Research Activities

	Early	/ Run	Mid-Run	Late Run		
H&CD	HHFW syster Electron heat HHFW/fast io EBW mode co	ing n interaction	HHFWCD HHFW/NBI comparisons (rotation) HHFW H-modes	HHFWCD w/j(r) measurements		
СНІ	CHI transient		High CHI currents CHI plasma control development	Demonstrate flux closure CHI edge CD CHI->non-ind. CD		
MHD	EF/RWM sen Locked mode Fast ion and (RWM rotation effects, passive stab. ELM physics Similarity experiments High- β_{τ}	Possible active REF/RWM ctl. Stability studies with j(r) meas.		
Т&Т	 Global conf. dependences & local transport studies Fast ion htg. & confinement 		P _{thresh} scaling Similarity experiments	Dimensionless scalings Characterize fluctuations		
Bdy			Li/B pellets Improved boronization/TMB fueling Heat flux scaling and edge char.	Fast edge transport Detached divertor		
ISD	SD rtEFIT development		HHFW/NBI compatibility Long-pulse H-modes	High- $\beta_T \tau_E$ Quasi-steady 1 sec discharges		
	Research elements scheduled according to start, not finish					

Reduced Run Time Will Hamper Scientific and Technical Progress

- Retained milestones
 - High- β and τ_{E} for $\Delta t > \tau_{\mathsf{E}}$
 - Non-inductive current drive to assist in startup and sustainment of ≥ 1 sec pulses
 - Edge heat flux dispersion and effect of PFC at high power
- Reduced scope milestones
 - Persistent CHI produced currents and coupling to other CD techniques
- Delayed milestones (by one year)
 - Interactions among resonant error field response, correction fields and rotation
 - Requirements for EBW heating and current drive

NSTX Is Developing a Comprehensive Run Plan to Address a Broad Spectrum of Scientific Issues

- Addressing these critical elements will allow us to achieve our Research Milestones
- Most experimental proposals will take advantage of significant new facility and diagnostic capability to dig deeper into underlying physics
- 21 run weeks is critical to achieving all our goals