

Department of En

Towards assessing the ST: the NSTX Research Program For FY '04 - '08

E.J. Synakowski Princeton Plasma Physics Laboratory Princeton, New Jersey for the NSTX Research Team

om

October 1, 2002

The NSTX Team is developing a research plan aimed at meeting two broad goals

- Assessing the attractiveness of the ST as a fusion energy concept in its own right
 Grounded in integration of topical science
- Using ST plasma characteristics to further a deeper understanding of critical toroidal physics issues
- Both pursuits are guided by the IPPA implementation approach

Key elements to achieving both include

- -Developing advanced control tools to maximize device flexibility
- -Developing & deploying advanced diagnostics
- -Promoting strong theory/experiment coupling

Integration of topical science is at the foundation of the NSTX Proof-of-Principle mission

'04

'03

'02

- PoP ⇒ establishing an extrapolable basis for advancing the ST that is grounded in plasma science
- Integration with advanced control tools and diagnostics central to the performance and scientific missions
- Strong coupling with theory is at the heart of establishing this basis
- High beta, low aspect ratio enable stringent tests of toroidal plasma physics

The NSTX Program can meet the FESAC objectives in a timely manner

- Assessing the ST as an attractive fusion concept
 - End of 2005: 5 year IPPA goal 2.1: Make a preliminary assessment of the attractiveness of the ST by assessing high β stability, confinement, self-consistent high-bootstrap operation, and acceptable heat fluxes, for $\tau_{pulse} >> \tau_E$
 - Non-inductive startup & sustainment should show progress
 - 2009+: 10 year IPPA goal: Assess the attractiveness of extrapolable, long-pulse operation of the ST for $\tau_{pulse} >> \tau_{skin}$
- Developing ST contributions to toroidal physics
 - IPPA science goals are guiding principles
 - High β NSTX operations provides many challenges to theories:
 - High beta
 - Low aspect ratio and different field line structure, especially at the edge
 - High V_{beam}/V_{alfven} , V_{ϕ}/V_{alfven}
 - High Mach number

This is part of a process to inform our thinking about how to best meet the FESAC goals

- Last time we met, C-Mod and DIII-D were planning to be reviewed this spring. We were informed last spring that we would be joining them.
- First step: input obtained in Five Year Plan Workshop, 6/24 6/26
 - Topical discussion groups (science topics & integration)
 - Tasks put to the participants included
 - Identify elements you think necessary to reach IPPA goals
 - Discuss possible major facility upgrades
 - Identify opportunities and role for advanced diagnostics, control tools
 - Identify theory and modeling requirements
 - Several from the general community participated (C-Mod, DIII-D, MAST, Pegasus) and provided insight on their planning status and thinking
- Now: feedback and perspectives from you on key elements
- Next Step: Five Year Plan Workshop, 12/12 12/13
- February PAC: more detailed plan and your feedback
- FESAC review in June

Integrating control tools & topical science is central to advancing the NSTX mission

Recent results are very encouraging for both long pulse and high beta

D NSTX —

To meet long range goals, several long-range challenges have to be met

Again, consider the long-pulse discharges

- Performance degrades with what may be q(r,t)-related MHD
 - Combined HHFW + NBI critical? Particle control for J(r) modification?
- Confinement favorable compared to scalings
 - Power degradation of χ_i , χ_e : Extrapolation and implications?
- NTMs not significant limitng factor
 - More deleterious at higher power, lower q?
- Density rises throughout the pulse
 - Density control/ELM optimization required?
- Startup is inductive
 - Will CHI or some other strategy work?
- About 50 % inductive current
 - Will HHFW, NBI, bootstrap be made to fill the gap?
- \Rightarrow The 5 year plan takes aim at these and other critical issues
- fi More on integration later in the talk...

Progress has been made towards achieving target of 40% β_{T}

IPPA Goal 1.2: Develop detailed predictive capability for macroscopic stability, including resistive and kinetic effects

- $\beta_{\rm N} = 6.5, \ \beta_{\rm N} \ / l_{\rm i} > 9.5. \ \beta_{\rm N} > 30\% \ {\rm over} \ \beta_{\rm N \ no-wall}$
- Maximum β_T of 34% obtained
- Takes advantage of broad P(r) in H mode

No-wall limit exceeded for many wall times

- High β_N portion calculated to be no-wall unstable for 90 ms
- Wall stabilization likely enabled by broad pressure coupling of mode to wall at higher β_N and high V_φ
 - Studies of V_{\u03c0}/wall interactions will be key for establishing physics basis
- Rotational shear effects may also be important

A goal of the next 5 years is to optimize the passive plates and feedback system configuration

Rotational effects on MHD may significantly alter equilibrium & kink stability characteristics

R. Bell, LeBlanc

- Experiment: Density shows inout asymmetry
- MHD theory benchmarked: captures asymmetry when flow effects and hot particle pressure is included (M3D)
- Effect of high Mach number of driven flow

- Experiment: kinks saturate (Stutman, JHU)
- Theory: reduction of linear growth rates.
 Saturation due to rotational shear can occur
 - effect of mode on the shear itself is important
- For physics basis: Need to understand how rotational shear stablization scales to larger devices

Theory/experiment coupling critical for PoP basis

M3D: Park

Integrating MHD science with control strategies is key to establishing physics basis

Understanding confinement trends has important practical implications, high physics leverage

- For extrapolable physics basis: need to understand how electron and ion χ's scale with engineering and physics parameters
- $\chi \text{ control} \Rightarrow \text{enormous leverage on P(r,t), J}_{BS}$
 - One of the community's toughest problems, but potentially enormous payoff
 - Heating and fueling flexiblity, J control are our best tools
- NSTX can teach us about broadly important issues
 - Important opportunities in low & high k turbulence
 - Electron transport
 - H mode: ST/tokamak comparisons must tell us something about role of field lines.

Turbulence diagnostics can enable unique NSTX contributions to universally important transport issues

IPPA Goal 1.1: Advance transport physics based on understanding of turbulence & turbulence dynamics

- Long wavelengths: naturally suppressed?
 - Reflectometry imaging being developed on TEXTOR.
 - Possible NSTX deployment in '05
- Short wavelengths: key to ubiquitous electron transport problem? Large $\rho_e \Rightarrow$ big modes, ideal scattering geometry on NSTX
 - prototype implemented in FY '03/'04
 - $k_r = 6, 20, and 30 \text{ cm}^{-1}$
- SOL: high intermittency seen in imaging (LANL), probes (UCSD). Determinant in heat fluxes?

Detailed diagnosis and gyrokinetic comparisons of β ~unity turbulence challenges us and is of keen interest to astrophysics community

- Turbulence dynamics: cascading of MHD turbulence to ion scales is of fundamental importance
- NSTX can provide tests electron thermal transport theory, important for tokamaks, at a high β extreme
- Gyrokinetic formalism applicable to high beta astrophysical turbulence problems
- ⇒ Their community wants to benchmark gk codes with diagnosis of β ~ 1 laboratory turbulence

Chandra X-ray Observatory Central 10 years of our galactic center 10⁵ times "too dim" High beta ion-scale turbulence problem

Quataert (Berkeley), Dorland (MD)

Transport studies will emphasize P(r) optimization and transport & turbulence understanding

RF research in several areas will grow in importance in FY '04 - '08

IPPA Goal 1.3: Develop predictive capability for plasma heating, flow, and current drive, as well as energetic particle driven instabilities...

- HHFW heats effectively; CD indicated by surface voltage
 - Next step local ΔJ measurements
- HHFW interactions with fast ions found (Rosenberg (Ph.D. Thesis), Medley)
 - Important for assessing CD efficiency
- EBW emissions being studied to identify requirements for possible new system.
 - Development path for EBW as a NTM and CD tool outlined

HHFW current drive goal is feedback control based on local measurements

- Near-term focus is on making system more reliable, higher power
- FY '03 will permit the first measurements of pitch angle changes driven by HHFW
 - CIF MSE deployed at start of FY '03
 - Measurement resolution target: ΔI_{p} ~ 1.5 kA within half-radius, assuming no E_{r} complication
- LIF MSE: first photons late FY'04, fully utilized in FY '05
 - E_r, J(r) effects on MSE signal will be separated. Will enable direct measure of pressure profile as well
- Possible improvements to antenna will be assessed
- Goal in FY '04 08: using phased array, control system (rtEFIT), P(r,t), J(r,t)

 \Rightarrow feedback control on HHFW CD current and heating

EBW studies aim to assess requirements for startup, CD, possible NTM control

Measure L_n with ORNL X-Mode Reflectometer

- Experiments show expected L_n dependence on conversion efficiency (Taylor; Wilgen (ORNL))
- Modeling indicates EBW efficiency comparable to ECH at $\beta \sim 10 20\%$
- Coupling experiments encouraging; controlled EBW limiter deployed for FY '03 21

Assessing HHFW, EBW science part of development strategies

Non-inductive startup research can be divided into different tasks

- Startup: 0 150 kA
 - CHI the primary tool at present
 - EBW
- Initial rampup: 150 500 kA
 - HHFW, EBW, bootstrap
 - Research can be performed with an ohmic start
 - Developing a high I_p CHI base for handoff being investigated as well.
 - PF induction scenarios being assessed
- Final ramp to flattop
 - 500 800 kA: NBI CD, bootstrap current overdrive are candidates

Each step is separable. Combining each is a control challenge

Recent results highlight promise of solenoidfree ramp-up

- Significant bootstrap fraction
- Resultant plasma was high performance (HH = 1.6)

Recent work on HIT-II demonstrates that CHI and induction can be coupled

- Knowledge that a CHI solution exists emboldens our program
 - Aim for CHI+ohmic in FY '03, initial work with CHI + HHFW
- Change in CHI strategy
 - Transient CHI startup + handoff: a new element
- High current CHI-to-handoff will also be developed

Raman, Jarboe, Nelson

Theoretical understanding of helicity transport is growing

- Advanced computation key to forming physics basis
- Fundamentally a nonlinear, resistive MHD problem
- Time-dependence of diagnostics can be used to decipher MHD dynamics

 $3D \chi n=0$ component

axisymmetric steady state χ

 $3D \chi n=1$ component

X. Tang, LANL

Non-inductive startup tools

Boundary physics assessment key to developing future edge divertor solutions

IPPA Goal 1.4: Advance the capability to predict detailed multi-phase plasma-wall inteerfaces at high power and particle fluxes

- Heat flux handling an issue for steps beyond NSTX. Early indications • are that this is managable on NSTX for several τ_{skin} @ 10 MW
 - A research question that should be answered this year
- An extrapolable understanding of heat flux scaling will require ۲
 - measurements of character (e.g. bursty?) of cross-field transport with probes (UCSD)
 - use of these data in analysis codes (UEDGE, B2.5, DEGAS)
- NSTX density control will likely be an important issue for the long term lacksquare
 - Particle control tool needs: to be assessed in FY '03; possibly deploy _ cryopumps in '05
 - Pellet injector an important component of this in Full Utilization scenario
- Li wall research on CDX-U being followed: possible module on NSTX
 - Has to meet stringent facility requirements. Cryo top, Li mod bottom?
- Research collaboration with VLT

Coupling of edge measurements and advanced modeling are central for establishing ST boundary science

- Required to integrate atomic and plasma physics in complex, 3D problem
- Collaboration with VLT will indicate path for Li module

 Further involvement with MAST will be important

Many boundary tools are available or planned to help enable NSTX's integration goals

Analysis is underway to explore the requirements for four research scenarios

- $\tau_{pulse} >> \tau_{CR}$ by any means possible
 - Bootstrap, NBCD, induction permitted
 - What is required to extend existing 1 second discharges?
- $\tau_{pulse} >> \tau_{CR}$ fully non-inductively sustained
- In what follows...
- Same as above, but replace induction with HHFW
- Can we drive current in the right place?
- Explore density dependence, need for higher $\rm T_e$ to increase bootstrap fraction
- Inductive, high performance
 - 40% β_T . Is wall stabilization sufficient?
 - Highest $\beta_T \tau_E$, highest H factor
- Solenoid-free ramp-up to high β_p

Kaye, Kessel, Phillips

31

NSTX can operate for several current relaxation times at TFs of interest

Long pulse discharges serve as the basis for extrapolation studies

- Start with close cousin to 109063, but with T_i documentation
- TSC free-boundary evolution from 100 kA to 800 kA
- Density profile shape prescribed to be same as 109070
- χ profiles chosen to reproduce shape of temperature profiles and T_i/T_e for 109070, then used in new scenario
- Inject 6.2 MW of NBI (only 4.2 MW absorbed), with NB CD efficiency benchmarked to 109070
- Inject 6.0 MW of HHFW, assumed deposition 50/50 electrons and ions, and assumed delivered current of 100 kA
- Improvement in non-inductive current fraction:
 - Lower n to improve NBI CD: n(0) = 0.5 ----> 0.4×10^20 /m^3
 - Increased elongation to raise q_{cyl} : $\kappa = 2.1 ---> 2.7$
 - Increased injected power: 4.2 (NBI only) ----> 10.2 MW (NBI+HHFW)
- Obtain I_p=800 kA, Bt=0.5 T fully non-inductive plasmas

•
$$I_{BS} = 380 \text{ kA}, I_{NBI} = 345 \text{ kA}, I_{HHFW} = 100 \text{ kA}$$

•
$$q_{cyl} = 3.3, q_{95} = 10, q(0) = 1.4 @ 1 s$$

• $\beta_{T, \text{ thermal}} = 16\%, \text{ total } \beta_T \sim 22\%, \beta_p = 1.4, \beta_N(\text{thermal}) = 5.8$

•
$$Z_{eff} = 3.5, \kappa = 2.1, H_{98} = 1.25$$

Raising elongation enables a boost from the bootstrap current

10/1/02 8:21 AM

VSTX ——

The NSTX program can meet the IPPA ST

assessments

- The plan is constructed to meet the 5 year ST assessment by the end of '05, and major progress for 10 year goal by '08
- Emphasis is on expanding the operating space of high beta ST plasmas and on demonstrating and developing the basis for fully non-inductive operations
- Assessments on attractiveness (5 and 10 year) will be based on successful integration of many topical science areas
- Plan demands a strong coupling between advanced computation and experiment to form extrapolable physics basis