

Transport & Turbulence and Boundary Physics Five Year Plan (FY '04-'08)

R. Maingi, S. Kaye*, and the NSTX Team
Oak Ridge National Laboratory
* Princeton Plasma Physics Laboratory

NSTX Program Advisory Committee Meeting Princeton Plasma Physics Laboratory 21-22 Jan. 2002

NSTX parameters challenge existing theory framework

- Local $\beta_t \rightarrow 100\%$
- Trapped particle fraction $\rightarrow 1$
- $\rho_i/L \sim 0.2$ (near edge); $\rho_i \sim 1 3$ cm

Validity of present gyrokinetic treatment

- High ∇ B, ExB flow (>200 km/sec) \rightarrow flow shear (10⁵ to 10⁶/sec)
- $V_{fast}/v_{Alfven} \sim 3 \text{ to } 4$
- $\rho_{fast}/a \sim 1/5 1/3$

NSTX transport goals aim to determine attractiveness of the ST and contribute to toroidal transport physics

- Establish key global (τ_E) and local (χ) transport scalings - e⁻ vs i⁺ transport, dependence on ρ^* , β_T , ω_{ExB}
- Assess roles of low- and high-k turbulence in heating and transport
- Assess fast ion confinement
 - Influence on neoclassical, turbulent heating and transport
- Determine influence of $E_r (\omega_{ExB})$ on turbulence, L-H

Use knowledge gained to control plasma transport Produce p(r), j(r), for high β_T , non-inductive current

Transport & Turbulence contributes to integration goals through H-factor and bootstrap current control

Boundary physics activities have both science goals and enabling technology responsibility

- Science goals
 - characterize edge power and particle transport regimes
 - parallel vs. cross-field
 - do conventional aspect ratio models fit?
 - understand effect of ST features on boundary physics, e.g.
 - large in/out B_t ratio
 - large SOL mirror ratio and short connection length
- Enabling technology tailor edge plasma to optimize discharges
 - evaluate power handling needs and solutions
 - assess fueling and particle pumping needs
 - develop and evaluate wall conditioning techniques

Boundary physics must provide particle and power handling to achieve long pulse integration goals

Outline

- Core Transport
 - Global energy confinement and scalings
 - Local transport studies
 - Ion and electron transport
 - Momentum and particle/impurity transport
 - Fast Ion Transport
- Boundary transport and characterization
 - Edge and SOL turbulence and transport studies
 - H-mode power threshold, pedestal and ELM studies
 - Particle and power control
 - Fueling, sources and sinks
 - Power handling and mitigation

Global confinement scalings of NSTX data commencing

- τ_E^{exp} from EFIT reconstruction
 Includes fast ion component
- Quasi-steady conditions

- MHD vs confinement limit?
- Different parametric dependencies for more transient L-mode plasmas
 - Role of rotation? Kaye, PPPL

$T_i > T_e$ during NBI indicates relatively good ion confinement

ITG suppressed (GK calculations)

Ion confinement sometimes "too good"

Independent validation of T_i profile needed (2-D X-ray crystal diagnostic)

Gates, Kaye, LeBlanc, Bell, PPPL

"Stiff" T_e Profiles during flattop period with NBI but sometimes peaked with RF heating

Momentum transport slower than thermal transport

• Inferred transport coefficient ordering: $\chi_{\phi} < \chi_{i} \le \chi_{neo} \le \chi_{e}$

Menard, Kaye, LeBlanc, Bell, PPPL

Core neon transport near neoclassical

Neon injection: Line radiation in He, H-like and continuum in fully stripped

Stutman, JHU

Local transport and global scaling studies FY 03-04 Plans

• Establish χ_e , χ_i , χ_{ϕ} baseline with NBI and/or RF

----- FY 03 -----

- Determine if and when χ_i anomalous
- Start to test role of ITG
- Measure D_{\perp} at higher β_T with impurity gas injection
- Similarity experiments with MAST/DIII-D
- R/a dependence in ohmic (rtEFIT control)

----- FY 04 -----

- Ion transport relation to rotation
- Assess modes for possible stochastic heating (calibrated reflectometry)
- Test T_e resiliency and assess role of ETG
- Relate transport and ITB formation to q(r) (MSE)
- Transient vs steady-state confinement dependencies/role of rotation

Local transport and global scaling studies FY 05-08 Plans

• Co vs counter NBI to study effect of flow shear (poloidal CHERs)

------ FY 05 -----

- Role of n_e(r) for ITG, ETG study (pellets)
- Assess low-k and high-k fluctuations (advanced turbulence diagnostics)
- Deuterium pellet injection for perturbative particle transport

------ FY 06-08 ------

- Detailed study of ion and electron transport to full-k turbulence
- Relate transport fluxes to changes in q(r), $E_r(r)$ (LIF MSE)
- Relate E_r (LIF MSE) to flows (CHERS)
- Relate E_r , v_{ϕ} and q(r) with ITB generation
- Determine rotation/confinement dynamics causality (1 ms CHERS)
- Impurity pellet injection for perturbative particle transport

Fast ion confinement studies just starting

Results

- Decay of neutrons consistent with classical slowing down
- Loss rate measurements lower than modeling
- Variations in neutron rate for nominally similar discharges

Plans

- FY03: Overall confinement trends with parameter, L vs H (sFLIP)
- FY04: Control loss fraction (vary gap)
- FY05: Non-ambipolar losses (co vs ctr); power deposition profile (neutron collimators)
- FY06-08: Extend studies (array of solid state detectors)

Outline

- Core Transport
 - Global energy confinement and scalings
 - Local transport studies
 - Ion and electron transport
 - Momentum and particle/impurity transport
 - Fast Ion Transport
- Boundary transport and characterization
 - Edge and SOL turbulence and transport studies
 - H-mode power threshold, pedestal and ELM studies
 - Particle and power control
 - Fueling, sources and sinks
 - Power handling and mitigation

Fluctuation characteristics measured vs. plasma parameters and confinement modes

Zweben (PPPL), Maqueda (LANL)

RF Ant

0.8

- Intermittent behavior observed in L and H-mode density
- Rate of bursts is ~ 2 kHz in H-mode and ~ 20 kHz in L-mode
- Poloidal field is much less intermittent
- Instantaneous particle flux $\sim 10^{19} \text{ m}^{-2}\text{s}^{-1}$

UEDGE modeling needed to estimate transport rates

$$D_{\perp} = 1 \text{ m}^2/\text{sec}, \chi_{\perp} = 3 \text{ m}^2/\text{s}$$

• UCSD examining convective cross-field transport model for L-mode discharges L-mode NSTX shot 109033, 259-276ms

Porter (LLNL)

L-H power threshold and ELM studies reveal differences with conventional aspect ratio tokamaks

Bush, ORNL

High n_e and relatively low T_e pedestal observed

- n_e profile hollow after transition and fills in 300-500 ms
- Moderate in/out n_e asymmetry usually observed
- T_e profile flattens initially and peaks later in time

Boundary transport and H-mode characterization FY 03-04 Plans

- Boundary Turbulence and transport:
 - Extend intermittent transport studies (L/H, density limit)
 - Extend radial correlation length studies
 - Determine if classic divertor heat flow models apply
 - Measure SOL midplane width scaling
- L-H transition, ELMS and pedestal physics:
 - Continue power threshold scaling; submit to ITER database
 - Identify dimensionless variables controlling L-H; test theories
 - Study role of E_r on transitions with gap, I_p variations, NBI vs RF
 - Continue studies on role of fueling in H-mode access (supersonic and new gas injectors)
 - Characterize edge pedestal; compare w/MAST, DIII-D
 - Characterize ELM sizes and dependencies

Boundary transport and H-mode characterization FY 05-08 Plans

- Boundary Turbulence and transport:
 - extend studies of low- and high-k turbulence, comparison with nonlinear gyrokinetic results
 - extend intermittent transport studies
 - measure density dependence of boundary transport (pellets, pump)
 - Measure SOL kinetic effects on SOL transport
- L-H transition, ELMS and pedestal physics:
 - Co vs ctr NBI for assessment of E_r on L-H (poloidal CHERS)
 - height, width, and maximum gradient scalings of pedestal (more edge TS channels)
 - role of fueling profile in setting pedestal density width (pellets, pump)
 - role of shape and fueling in ELMs; conductive vs. convective loss
 - optimization of ELMs for density and impurity control
 - edge transport barriers with CT injection

Outline

- Core Transport
 - Global energy confinement and scalings
 - Local transport studies
 - Ion and electron transport
 - Momentum and particle/impurity transport
 - Fast Ion Transport
- Boundary transport and characterization
 - Edge and SOL turbulence and transport studies
 - H-mode power threshold, pedestal and ELM studies
 - Particle and power control
 - Fueling, sources and sinks
 - Power handling and mitigation

Peak heat flux increased with NBI power in lower-single null, but lower in double-null

Fuel and impurity source control plan

- Improved source control
 - more poloidal locations for gas (FY03-04)
 - supersonic gas nozzle (FY03-04)
 - Lithium pellets (FY03)
 - D_2 pellet injection (FY05)
 - CT injection? (FY07 $\langle ? \rangle$)
- New diagnostics
 - D_{α} cameras for core fueling
 - pellet diagnostics
 - more edge Thomson channels
 - divertor Langmuir probe upgrade

Fuel and impurity sink control plan

- Improved sink (density) control
 - improved boronization (FY03)
 - lithium pellets (FY03)
 - in-vessel cryopumps (FY06,FY04 <?)</p>
 - lithium module(FY08, FY06 ?)
- New diagnostics
 - $n_{C}(r)$ f/CHERs, Z_{eff} f/MPTS (FY03)
 - D_{α} cameras for core fueling
 - divertor SPRED
 - upgraded Langmuir probe array
 - fast pressure gauges

Power handling and mitigation plan

- Experimental plan
 - Power balance studies (FY02+)
 - divertor heat flux vs core and divertor radiation
 - parallel vs perpendicular transport
 - Detailed comparison between single-nulls and double-nulls (FY03+)
 - Heat flux reduction studies (FY03+)
 - Impact of fast events, e.g. ELMs, IREs, and disruptions (FY05)
- New Diagnostics
 - Cross-calibrate core bolometry with platinum-foils (FY03)
 - Add and optimize divertor bolometer channels (FY03-04)
 - Add two slow and <u>one fast</u> infrared cameras (FY04, <u>FY05</u>, FY07)

FY03	04	05	06	07	08	09
IPPA: 5						IPPA: 10
Confinement so Momentum & pov electon & ion heatin Boundary trans turbulence Pedestal charact	calings ver balance, stro ng, low and high port & port & v _o st terize	ng beta Low/high k sp Poloidal flows near & w/error field χ&	nsport & turbulence bectra theory/experi lo/high beta Feedbac pellets	ment, ck with heating, CD, \	Unde V _o , fueling	erstanding P(r),J _{BS} ptimize
MSE (CHERS 51 ch Imaging X-ray (Edge ν _{φ,τ} Li pellets	CIF crystal MPT Turbulence <i>In</i> Error fic coils	Poloidal CHERS Supgrades He b diagnostics <i>itial Ac</i> Neu eld D pell	MSE LIF polari Fast CH eam spectroscopy dvanced F tron collimator 1 – 3 ets Cryop	(J, E _r , P); metry HERS (edge) Liquid Li? CT injection? Feedback with MSE, I MW EBW Impu	Trans heating, CD, rtEFIT urity injector d state neutral partic	sport tools
Predictive Transp (GLF23, Multi-Mode) GS2 linear, non-linearTransport theoryGTC trapped e ⁻ Finite β High βtheoryGyronon-adiabatic e ⁻ Neoclassical: beam-thermal friction, potato orbit, high ρ/L, B _{pol} /B _{tor} Full predictive transport simulationsNon-linear CAEAnomalous heating models						ort ctive ulations

Transport Goals are Related to IPPA Goals

- Five year goal (IPPA 3.1.1)
 - Advance the scientific understanding of turbulent transport, forming the basis for a reliable predictive capability in externally controlled systems
- Ten year goal
 - Develop fully integrated capability for predicting the performance of externally controlled systems including turbulent transport, macroscopic stability, wave particle physics and multi-phase interfaces

Boundary goals are linked to IPPA goals

- 5-Year Objective: Make preliminary determination of the attractiveness of the spherical torus (ST), by assessing high- β_T stability, confinement, self-consistent high bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times.
- Implementing Approach 3.2.1.5:
 - Disperse Edge Heat Flux at Acceptable Levels
 - Study ST specific effects
 - high mirror ratio
 - high flux expansion

NSTX Offers Unique Opportunities $\bigcirc NSTX$ Low B_T \rightarrow Large gyro-scale lengths, high β_T Low R/a \rightarrow Large field line pitch on LFS Relatively high beam energy \rightarrow High relative velocity

High-Field Side Gas Injector Fueling Allows Early L-H Transition and Longer H-mode Duration

Theory and Modeling - Plans

- FY03: Predictive TRANSP using analytic estimates of χ's; validate GK codes in low R/a regime (benchmark); update neoclassical (beam-thermal friction, large ρ/L); non-adiabatic fast ions; edge transport modeling
- FY04: Predictive TRANSP analysis with χ 's from non-linear GK runs; incorporate large ρ^* , β_T , f_T , shaping effects into GK codes; non-linear calcs of CAE mode amplitudes; start to compare turbulence measurements to theory
- FY05: Incorporate ExB, non-local effects in GK; extend theory/exp't comparison of turbulence; start developing anomalous heating models
- FY06-08: Start to develop high-confidence predictive capability; combine with MHD stability to form self-consistent package for integrated scenario development

Edge, SOL, divertor and wall conditioning physics background

- Classical divertor heat flow regimes applicable?
 - high divertor T_e , sheath-limited heat flow
 - low divertor T_e, conduction-limited heat flow
 - detachment
- Impact of unique ST features
 - high SOL mirror ratio, short connection length, high flux expansion
 - in/out B_t ratio and target; E X B flows
- Cross-field transport: diffusive vs. intermittent
 - intermittent transport appears strong in both L and H-modes
 - any cross-correlation with ELMs?
- Wall conditioning technique assessment
- Plan: near-term focus on nature of cross-field transport, and longer term on ST kinetic effects

H-mode, pedestal and ELM physics background

- L-H transition physics (common with transport group)
 - P_{LH} higher than scalings trapped particles, poloidal damping?
 - I_p and maybe B_t dependence of P_{LH} appears different
 - role of E X B shear?
- Pedestal: profile shapes, gradients and widths
 - density pedestal high and in/out asymmetry
 - pedestal $T_e \le 400 \text{ eV}$, below predictions
- ELMs
 - Tokamak-like ELMs in double-null
 - Usually ELM-free or very large events in single-null
 - Fueling affects ELM type strongly
- Plan: characterization studies over next few years and optimization studies over longer term

Fuel and impurity particle control background

- Center stack gas injection enabled routine H-mode access
 - higher β due to lower pressure peaking factor
 - long pulse due to low volt-second consumption rate, owing to high bootstrap fraction from edge pressure gradient
- Limited control leads to uncontrolled density rise
- Location of gas fueling source affects H-mode access
- Goal: make density independent of time
- Staged plan with parallel components
 - improve control of sources, aiming toward higher efficiency
 - improve control of sinks via wall conditioning and active pumping

Power handling and mitigation background

- ST's can have high heat flux because of high P_{heat}/R
 - NSTX: $P_{\text{NBI}} \sim 7 \text{ MW}$, $P_{\text{RF}} \sim 6 \text{ MW}$, $P_{\text{heat}}/R \sim 15.3$
- Highest q_{peak} in NSTX ~ 10 MW/m²
 - $-~\Delta T_{div} \sim 300~^{0}C$ in LSN
 - extrapolates to ~ 3 sec. pulse length limit ($\Delta T_{div} \sim 1200 \ ^{\circ}C$)
- For $T_e \le 2$ keV, current diffusion time << 3 sec.
 - If T_e increases, current diffusion time could approach few seconds
- Goal: assess power balance and survey heat flux in many scenarios (vs. shape, input parameters, etc.)
- Staged plan
 - quasi-steady power balance over next few years
 - transient events in future

Preliminary neutral transport studies show possible plenum pressure sensitivity to strike point

- Same model and n_e, T_e, P_e profiles for DIII-D as in Maingi, et. al., *Nucl. Fusion* **39** (1999) 1190
- Ion current = 5kA, used for normalization
- Leakage conductance = $20 \text{ m}^3/\text{sec}$

Wall conditioning physics plan

(()) NSTX ——

- Wall conditioning technique assessment (FY03+)
 - how does boronization change wall physics?
 - how do those changes improve the core plasma?
- New Diagnostics
 - quartz crystal deposition monitors for real time flux
 - divertor SPRED for impurities
 - divertor materials probes (like DiMES on DIII-D)
 - plus all other divertor diagnostics...