

E.J. Synakowski Princeton Plasma Physics Laboratory Princeton, New Jersey

for the NSTX Research Team

NSTX research is both a U.S. and international enterprise

- CEA Cadarache, France
- Columbia University, New York, N.Y., U.S.A.
- CompX, Del Mar, California, U.S.A.
- ENEA, Frascati, Italy
- Euratom-UKAEA Fusion Association, Abingdon, Oxfordshire, UK
- General Atomics, San Diego, California, U.S.A.
- Kyushu Tokai University, Kumamoto, Japan
- Himeji Institute of Technology, Okayama, Japan
- Hiroshima University, Hiroshima, Japan
- Johns Hopkins University, Baltimore, Maryland, U.S.A.
- Korea Basic Science Institute, Taejon, Republic of Korea
- Lawrence Livermore National Laboratory, Livermore, California, U.S.A.
- Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A.
- Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. 20-
- Nova Photonics, Princeton, New Jersey, U.S.A
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ
- Princeton Scientific Instruments, Princeton, New Jersey, U.S.A.
- Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.
- Tokyo University, Tokyo, Japan
- University of California, Davis, California, U.S.A.
- University of California, Irvine, California, U.S.A.
- University of California, Los Angeles, California, U.S.A.
- University of California, San Diego, California, U.S.A.
- University of Washington, Seattle, Washington, U.S.A.
- University of Wisconsin, Madison, Wisconsin, U.S.A.

The NSTX Team is developing a research plan aimed at meeting two broad goals

- Assessing the attractiveness of the ST as a fusion energy concept
 - CTF and DEMO
 - Grounded in integration of topical science
- Using ST plasma characteristics to *further a deeper understanding of critical toroidal physics issues*
- Both pursuits are guided by the IPPA implementation approach

Challenges: <u>Understand</u> the new physics of high beta and low aspect ratio, and <u>integrate</u> it to expand the limits of the ST operating space.

NSTX science is emerging at a time of rapid change in our field

"From my own reviews of recent research on magnetically confined plasmas, I believe this field has benefited, as many other fields have, from the revolutionary improvements in *computing power* and *instrumentation*. The ability to predict plasma parameters in realistic simulations and then test them in detail in actual devices *has changed the character of the entire field* substantially...." (italics added)

> Jack Marburger Director Office of Science and Technology Policy Testimony for the NRC panel

The differences in field line geometry between devices can be viewed as the basis of a scientific experiment

Change the aspect ratio, increase beta: what physics changes?

Tokamak

A strong NSTX science program enables physics tests in areas of high concern to any next-step device

	Moderate A, lower β	Lower A $\beta(0) \Rightarrow 1$		Testable toroidal physics
	Strong flow shear: possible Electrostatic turbulence	Strong flow shear: typical? Strong electromagnetic turbulence?	\Rightarrow	Global scalings Barrier dynamics Electron thermal transport
-	$V_{Alfven} > V_{beam} > V_{th}$	$V_{beam} > V_{Alfven} \sim V_{th}$	\Rightarrow	Equilibrium theory Rotational shear effects on MHD MHD wall coupling theories East ion & wave coupling
	Smaller Larmor radius More modest average curvature Less poloidal damping	Larger Larmor radius Higher average curvature Stronger poloidal damping	⇒	Pedestal models H mode theories
	Lower flux expansion in divertor	Higher flux expansion in divertor	\Rightarrow	SOL transport and divertor physics

Integration of topical science is at the foundation of the NSTX Proof-of-Principle mission

'04

'03

'02

- PoP ⇒ establishing an *extrapolable basis* for advancing the ST that is grounded in plasma science
- Integration with advanced control tools and diagnostics central to the performance and scientific missions
- Strong coupling with theory is at the heart of establishing this basis
- High beta, low aspect ratio enable stringent tests of toroidal plasma physics

Integrating topical science & control tools is central to advancing the NSTX mission

The NSTX Program can meet the FESAC objectives in a timely manner

- Assessing the ST as an attractive fusion concept
 - End of 2005: 5 year IPPA Goal 2.1
 - Make a preliminary assessment of the attractiveness of the ST by assessing high β stability, confinement, self-consistent high-bootstrap operation, and acceptable heat fluxes, for $\tau_{pulse} >> \tau_E$
 - Non-inductive startup & sustainment should show progress
 - 2009+: 10 year IPPA goals
 - Goal 2: Assess the attractiveness of extrapolable, long-pulse operation of the ST for $\tau_{\rm pulse} >> \tau_{\rm skin}$
 - Goal 3: Assess the potential of the ST as a basis for burning plasma studies and/or fusion-nuclear component testing
- Developing ST contributions to toroidal physics
 - Toward the 10-year IPPA science goal
 - Develop fully integrated capabilityfor predicting the performance of externally-controlled systems including turbulent transport, macroscopic stability, wave-particle physics, and multi-phase interfaces
 - The research plan is guided by individual IPPA topical science goals

Recent results are encouraging for high beta

1/20/03 5:58 PM

2

Recent results are encouraging for long pulse

- J_{NI} = 60%
- $\beta_N = 5.8 > no-wall stability limit$
- Many parameters that are relevant to a CTF

	NSTX	CTF	ARIES-
	Long pulse	base case	ST
β_{T}	15%	20%	50%+
β _N	5	5	8
β _p	1.2	1	1.4
q _{cyl}	3.2	3	3

Operational challenge:Integrating highest performance and long pulseScience challenge:Physics understanding of operating limits & their
scalings

Facility capabilities have enabled the research program to advance in the last two years

Integrating MHD science with control strategies is key to establishing physics basis

_____ *MHD* poar

Developing the science of controlling the plasma MHD near the with-wall beta limit is a key element of the 5 year plan

IPPA Goal 3.1.2: Develop detailed predictive capability for macroscopic stability, including resistive and kinetic effects

- High β_N needed for high J_{BS} & effective coupling to wall or stabilizing coils
- Routine operation above the nowall limit
 - Broad H mode, rotation & passive stabilization are key elements
 - Exceeded goals for passive stability of 25% β_T . Good progress towards 40%

MHD control tools are central elements to developing robust path to high performance, long pulse targets

Interplay between stability, wall, error fields, and rotation is a key element of the program

Real-time mode identification & feedback control are required

- β initially above no-wall limit, but collapses after V_φ falls below critical value
 - Timescale ~ τ_{wall}
 - Exceeded no-wall limit for up to ${\sim}20{\times}\tau_{wall}$ in best case

 Modeling shows effective coupling of mode to wall

With DIII-D: reveal nature of scaling of critical rotation

Sabbagh will discuss MHD plan, issues, and options

Influence of high V_{ϕ}/V_{A} already seen in equilibria: relevant to stabilization?

- Experiment: Density shows inout asymmetry
- Effect of high Mach number of driven flow

- Experiment: kinks saturate (Stutman, JHU)
- Theory: reduction of linear growth rates. Saturation due to rotational shear can occur

For physics basis: Need to understand how rotational effects scale to other devices

Transport studies will emphasize P(r) optimization and transport & turbulence understanding

NSTX transport studies already reveal important surprises

- T_i can exeed prediction of classical NBI heating & neoclassical ion transport
- Impurity puffing reveals naturally occuring core barrier in plasmas with L mode edge
- High scientific and practical value: with a change of aspect ratio and beta, we've created a system we cannot yet explain
- Understanding physics of ٠ confinement trends needed for accurately predicting properties of ST CTF or DEMO

Turbulence diagnostics can enable unique NSTX contributions to universally important transport issues

IPPA Goal 3.1.1: Advance transport physics based on understanding of turbulence & turbulence dynamics

- Long wavelengths: naturally suppressed?
 - Reflectometry imaging being developed on TEXTOR.
- Short wavelengths: key to ubiquitous electron transport problem?
 - $\begin{array}{ll} & \text{Large } \rho_e \Rightarrow \text{big modes, ideal} \\ & \text{scattering geometry on NSTX} \end{array}$
- SOL: high intermittency seen in imaging (LANL), probes (UCSD). Determinant in heat fluxes?

High k: scattering

ST advantage: large changes in direction of B in scattering with FIR yields high localization (Mazzucato)

> Maingi will discuss transport and boundary physics research plan

HHFW, EBW, and CHI science all part of solenoid-free startup strategy

Several current drive tools are being pursued to provide needed flexibility in FY '04 - '08

IPPA Goal 3.1.3: Develop predictive capability for plasma heating, flow, and current drive, as well as energetic particle driven instabilities...

- HHFW heats effectively. CD indicated by surface voltage
- HHFW interactions with fast ions found (Rosenberg (Ph.D. Thesis), Medley)
 - Important for assessing CD efficiency
- EBW emissions being studied to identify requirements for possible new system.
 - Development path for EBW as a NTM and CD tool outlined

Taylor will discuss HHFW & EBW , and CHI plans

Plan approaches solenoid-free startup research with different tasks

- Startup: 0 150 kA
 - CHI the primary tool at present
 - EBW may contribute as well
- Initial rampup: 150 500 kA
 - HHFW, EBW, bootstrap
 - Research can be performed with an ohmic start
 - PF induction scenarios being assessed
- Final ramp to flattop
 - 500 800+ kA: NBI CD, bootstrap current overdrive are candidates

Each step is separable. Combining all three is a control challenge

Two recent results have (re)shaped our thinking about solenoid-free rampup: I. Recent JT-60U results

- Significant bootstrap fraction
- Resultant plasma was high performance (HH = 1.6)
- Small inboard triangularity coil contributed flux in initial period

II. Recent work on HIT-II demonstrates that short-pulse CHI and induction can be coupled

- HIT-II record currents now with CHI + induction
- Knowledge that a CHI solution exists emboldens our program
 - Aim for CHI+ohmic in FY '03, initial work with CHI + HHFW
- Change in CHI strategy
 - *Transient* CHI startup + handoff: a new element
- High current CHI-to-handoff will also be developed

Raman, Jarboe, Nelson

Growing the theoretical understanding of CHI will take advantage of resistive MHD codes and simulation of magnetics measurements

- Fundamentally a nonlinear, resistive MHD
 - problem
- Advanced computation key to forming physics basis
- Time-dependence of diagnostics can be used to decipher MHD dynamics

 $3D \chi$ n=0 component

X. Tang, LANL

Many boundary tools are available or planned to help enable NSTX's integration goals

Electron Temperature (NSb07)

-0.8

-1.2

-1.6

Z [m]

Coupling of edge measurements and modeling are central for establishing ST boundary science

- Required to integrate atomic and plasma physics in complex, 3D problem
- Collaboration with VLT may indicate a path for Li module

 Further involvement with MAST will be important

Rensink, Porter, Wolf (LLNL); Stotler

IPPA 3.1.4: Advance the capability to predict detailed multi-phase plasma-wall interfaces at very high power

R [m]

0.8

0.4

and particle fluxes

•

Advanced particle and heat flux control techniques are being considered

- Liquid lithium model a possibility in the second half of the plan
- Li pellet injection on NSTX contributes to assessment of applicability
- Assessment in conjunction with APEX, CDX-U research
- Success might have broad implications for fusion

ALIST liquid surface module concept

Integrating the physics: towards high performance, long pulse targets

- Scenario development strategy and tools

-Issues identified

Detailed scenario assessments: quantify & clarify performance and sustainment goals and requirements

- Assessments involve integration of plasma models to simulate the self-consistent plasma behavior in a full discharge, in a reasonable computational time
- Primary tools: TSC (free-boundary) and TRANSP (fixed boundary)
- Supporting modeling results from SCIDAC and NTCC

Simulations are underway to explore the requirements for integration and solenoid-free operations Non-inductively sustained, $\tau_{pulse} >> \tau_{skin}$, ٠ Discussed first – HHFW + NBI: varied density and κ HHFW only Solenoid-free ramp-up to high $\beta_{\rm p}$ ٠ - CHI, HHFW, NBI Discussed next High performance, $\tau_{pulse} >> \tau_{skin}$ Simulation plan outlined - 40% β_{T} ; probable active MHD feedback Identify current drive requirements and stability in light of recently obtained profiles $\cdot \beta_{T} = 30\%, \Delta t > \tau_{F}$ **Highest** • $\beta_{T} = 40\%$, 40% βτ $\beta_{N} = 5$: > no wall limit • β_N = 8 performance Δt >> τ_{skin} HH = 1 $\Delta t \gg \tau_F$, HH = 1.4 Integration $\beta_N = 8$ • $J_{NI} > 60\%$, $\Delta t \sim \tau_{skin}$ HH = 1.4• $J_{NI} \sim 100\%$, $\Delta t > \tau_{skin}$ Solenoid-70% J_{BS} Non-solenoid startup free • Solenoid-free up to hi β_p demo 1/20/03 5:58 PM

NSTX can operate for several current relaxation times at TFs of interest

Toroidal field vs. flattop time

Developing fully non-inductive sustained scenarios begins with high β_p long-pulse plasmas

- Shot 109070 is a good prototype for longer pulse since $\Delta t > \tau_{skin}$ and $I_{NI} > 50\%$
 - $I_p = 800 \text{ kA}$: $I_{BS} = 240 \text{ kA}$, $I_{NBI} = 160 \text{ kA}$, $I_{\nabla p} = 50 \text{ kA}$
 - High confinement HH > 1.0, and $\beta_N \approx 5.9$

In simulations

- First add 6 MW of HHFW power to 6 MW of NBI. Assume 50/50 electron/ion heating split with HHFW
 - Raises temperature, increases I_{BS} and decreases collisionality
- Then, in this exercise
 - A. Lower the density
 - Improve CD efficiency of NBI and HHFW external sources
 - B. Raise the elongation
 - Increases q_{cyl} as (1+ κ^2), increasing I_{BS}

Added HHFW power at lower density can help obtain $f_{NI} \approx 1$

- Lower $n_{e_{1}}$ higher power, higher T_{e} yield lower v_{*} , higher J_{NI}
 - I_{BS} (model/exp't) = 380 kA/240 kA
 - I_{NB} (model/exp't) = 345 kA/160 kA
- Underscores need to seriously consider active particle control
- High total β_N : demand for active MHD control likely

1/20/03 5:58 PM

Higher elongation, addition of HHFW can help obtain $f_{NI} \approx 1$

- I_{BS} (model/exp't) = 490 kA/230 kA
- I_{NB} (model/exp't) = 220 kA/155 kA
- $\beta_N = 7.1$ (5.2 thermal), HH 1.2
- High elongation a key element of ARIES reactor visions

 $n(0) = 0.5 \times 10^{20} / m^3$, $Z_{eff} = 3.5$. 100 kA I_{HHFW}, 50/50 heating split assumed

Several high elongation configurations will require further development of advanced control

- Questions pertain to
 - robustness of vertical stability
 - H mode access
 - heat flux management
- To be investigated in the plan's research period: upgraded vertical control
 - Passive plate optimization for vertical stability
 - Power supply upgrades
 - Internal control coils

CD codes being benchmarked, parametric scans being performed

- Reasonable agreement between ray tracing codes for HHFW CD experiments
- Full wave codes predict similar deposition to ray tracing codes
- In progress: comparison of HHFW fast ion absorption to measurements of high energy fast ion tail populations

HHFW can be used following CHI to raise the current to several hundred kA

- A significant control challenge
- Assume a 100 kA plasma for coupling to 6 MW HHFW
- HHFW CD assumed scaled from CURRAY calculations for similar $\rm n_e$ and $\rm T_{e.}$
- J_{BS} a major player in the total current.
- Hardware requirements
 - Control with open field lines needs to be developed
 - Assess diagnostic input needs for handoff between CD techniques

time, s

2

1 s

98 10

Requirements to meet 40% β_T target to be examined in light of NSTX data

- To do for the plan: model based on 30 35% $\beta_{\rm T}$ plasmas
 - What J_{BS}(r) and J_{NB}(r) does predictive modeling suggest based on measured profiles?
 - Different splitting of $n_{\rm e},\,T_{\rm e},\,T_{\rm i}$ implies different $J_{\rm BS}$
 - Improved bootstrap models (Sauter, NCLASS,...)
 - Evaluate HHFW CD, EBW CD efficiency and location for range of predicted scenarios
 - Reevaluate stability with suite of ideal stability codes

Both with conducting wall From Menard *et al.*,

NF 37 (595) 1997

NSTX can contribute to a community-wide advance on transport & turbulence science

- χ_e : a deep transport mystery. Understanding is a need for burning plasmas
- TTF is developing a proposal for a renewed transport initiative.
- Suite of machine types can develop a powerful scientific story

Detailed diagnosis and gyrokinetic comparisons of β ~ unity turbulence is of broad scientific importance

- Astrophysics and turbulence dynamics: cascading of MHD turbulence to ion scales is of fundamental importance in beta ~ unity systems
- Fusion's gyrokinetic formalism applicable to high beta astrophysical turbulence problems
- Astrophysicists have keen interest in benchmarked codes

Chandra X-ray Observatory Galactic center 10⁵ times "too dim"

10 light years

Subluminous black hole accretion disks

Quataert (Berkeley), Dorland (MD)

Armitage (U. Colorado)

Possible approach for low k: imaging

The NSTX program looks to help make maximal scientific advantage of intermachine comparisons

Paoletti, Sabbagh (Columbia)

- Well-aligned with ITPA process
- One opportunity: beta dependence of τ_E
 - A concern for burning plasmas
 - NSTX is an ideal place to explore this
- MAST: plans for constructing identical configurations, merging of databases
- With DIII-D: Joint experiments being proposed and implemented
 - RWM
 - Fast ion MHD: CAE, TAE
 - Pedestal similarity
 - Core confinement

Full facility utilization & upgrades permits timely realization of goals

- Constant budget scenario will lead to significant delays in reaching primary goals
- Integration emphasis demands a balanced program even in limited budgets

The NSTX program is headed to meet IPPA goals as defined by the community

- The plan is constructed to meet the 5 year ST assessment by the end of '05, and major progress for the 10 year goals by the end of '08
 - Plan makes optimal use of facility and upgrades
 - Less funding significantly slows progress
- Emphases: leading contributions to ST assessments for energy development, cross-cutting toroidal physics, and high beta plasma science
 - expand the operating space of high beta ST plasmas. Demonstrate and develop the basis for solenoid-free operations
- NSTX research aims to couple strongly to advanced computation and other experiments, through the ITPA, to form an extrapolable ST physics basis
- Assessments on attractiveness (5 and 10 year) will be based on successful integration of many topical science areas

Supporting slides

IPPA goals and objectives

Goals	5-Year Objectives	10-Year Objectives	I	5-year Objectives	10-year Objectives
<u>Goal 1:</u> Advance understanding of plasma, the fourth state of matter, and enhance predictive capabilities, through comparison of well-diagnosed experiments, theory and simulation.	 1.1 Turbulence and <u>Transport</u> Advance scientific understanding of turbulent transport forming the basis for a reliable predictive capability in externally controlled systems. 1.2 Macroscopic Stability Develop detailed predictive capability for macroscopic stability, including resistive and kinetic effects. 1.3 Wave Particle <u>Interactions</u> Develop predictive capability for plasma beating, flow, and current drive, as well as energetic particle driven instabilities, in a variety of magnetic confinement configurations and especially for reactor-relevant regimes. 1.4 Multiphase Interfaces Advance the capability to predict detailed multi-phase plasma-wall interfaces at very high power- and particle-fluxes. 1.5 General Science Advance the forefront of non- fusion plasma science and plasma technology across a broad frontier, synergistically with the development of fusion science in both MFE and IFE. 	Develop fully integrated capability for predicting the performance of externally-controlled systems including turbulent transport, macroscopic stability, wave particle physics and multi-phase interfaces. Develop qualitative predictive capability for transport and stability in self-organized systems. Advance the forefront of non- fusion plasma science and technology across a broad frontier, synergistically with the development of fusion science.	<u>Goal 2:</u> Resolve outstanding scientific issues and establish reduced-cost paths to more attractive fusion energy systems by investigating a broad range of innovative magnetic confinement configurations.	2.1 Spherical Torus Make preliminary determination of the attractiveness of the Spherical Torus (ST), by assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times.	Assess the attractiveness of extrapolable, long- pulse operation of the Spherical Torus for pulse lengths much greater than current penetration time scales.

Integration & Control Builds on Progress in Facility, Diagnostics & Topical Research

Integration & Control Timeline (2)

TSC (free boundary), predictive TRANSP (fixed boundary), and models are the primary integration tools

- Effort draws upon several resources for code development
 - SciDac modeling
 - NTCC physics module library
 - New Advanced
 Computing
 Integrated
 Simulation
 Initiative

Forming scientific basis requires benchmarking between most comprehensive codes (SCIDAC), faster models, and data

Scenario modeling takes advantage of existing data & clarifies research needs

Examples of issues and plans: Long-pulse, non-inductively sustained plasmas

Торіс	Issue	Approach for this spring's plan	Needed research beyond this spring
Transport	χ_{i} and χ_{e} with HHFW and NBI	Power balance results, scaled with power degradation. Parametric dependence of χ 's inferred this run.	'03 - '04: assess χ parametric behavior
HHFW and EBW	 Where is J_{CD} needed? Efficiency, location of HHFW & EBW-driven J(r). 	 Evaluate theoretically RF deposition profiles based on long pulse & high beta scenarios Compare to V_{loop} changes 	 SciDAC modeling. Measure J(r) and changes as HHFW and EBW are applied.
MHD	Stabilization requirements for projected scenarios	 Evaluate stability with extrapolated P and J profiles Use modeled fast ion pressure 	 Clarify role of rotation on stability Measure fast ion P
Boundary physics	 Pumping needs. Heat flux management needs 	 Identify desired range of n_e to maximize I_{NI} with modeling. Perform heat flux scaling exp'ts & assess particle inventory 	 Lithium studies Heat flux scaling experiments & modeling
СНІ	Ability of CHI to supply edge current	 Identify possible edge J(r) needs with modeling. Perform edge biasing studies. 	 Experimental studies in '03 - '05 ΔJ with MSE
Control	Accessiblity and control of high κ	Perform experimental shaping studies & assess limitations	 Control system optimization Hmode access @ high κ