

OD NST.

NSTX FY05-06 Research in the Collaborative US & World Fusion Program

Martin Peng

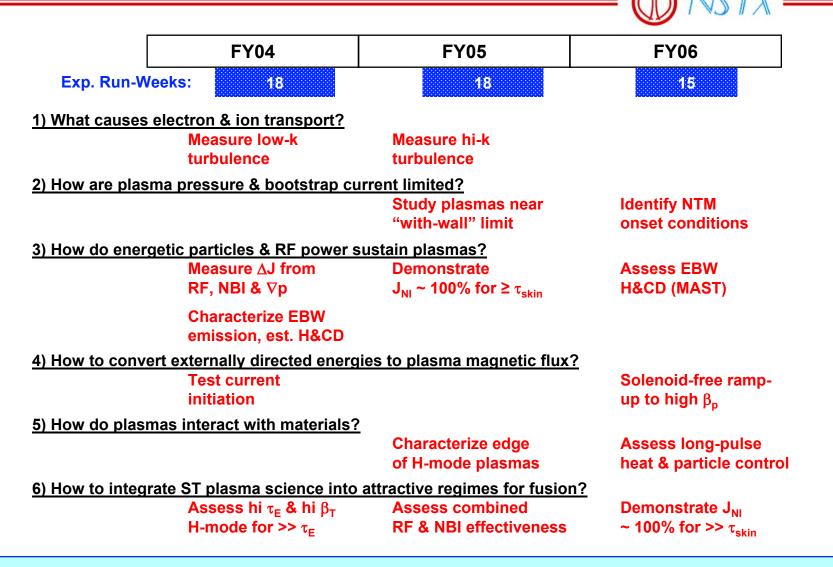
Oak Ridge National Laboratory, UT-Battelle @ Princeton Plasma Physics Laboratory

For the NSTX National and International Team

NSTX PAC-15th Meeting

January 12 – 14, 2004 PPPL

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI** SNL **UC Davis UC Irvine** UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo JAERI loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching **U** Quebec


NSTX Can Effectively Address Overarching Scientific Issues of Practical Fusion Energy

Plasma Science Questions	NSTX Scientific Features	⇒	Practical Fusion Energy
 What causes electron and ion transport? 	γ _{ExB} /γ _{ITG} ~ 10; β′ρ _i ~ 0.03	⇒	Smaller unit size for sustained fusion burn
2) How are plasma pressure & bootstrap current limited?	$\begin{array}{l} M_{A} \sim 0.3; \ \kappa \sim 2.5; \ B_{p} \sim B_{t} \\ \beta_0 \sim 1; \ \beta_{N} \sim 8; \ f_{BS} \sim 0.7 \end{array}$	⇒	Lowered magnetic field and device costs
3) How do energetic particles& RF power sustainplasmas?	$V_{\text{fast}}/V_{\text{Alfvén}} \sim 4;$ $\varepsilon = \omega_{\text{pe}}^2/\omega_{\text{ce}}^2 \sim 50$	⇒	Efficient fusion a particle, neutral beam, & RF heating
4) How to convert externally directed energies to plasma magnetic flux?	$ \begin{split} \ell_i &\thicksim 0.3; \\ \Psi &\thicksim \mu_0 \ell_i R I_p \geq 0.3 \text{ Wb}; \\ K &\thicksim 1.6 \ell_i \kappa a^2 I_{TF} I_p \geq 0.5 \text{ Wb}^2 \end{split} $	⇒	Simplified smaller design, reduced operating cost
5) How do plasmas interact with materials?	$f_{Trapped} \sim 1; B_p \sim B_t;$ Flux tube expn. ~ 10-30	⇒	Survivable plasma facing components

Integration of these leads to compact CTF and practical power plant
This is a major goal of 5-Year Plan

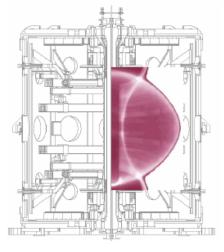
FY04-06 Research Aims to Advance Physics of High β , Transport, Startup, Current Drive, Boundary & Integration

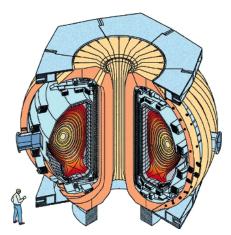
Research will be carried out by national & international collaborative team.

The U.S. NSTX Program Is a Highly Collaborative Effort

Institution	Research Topic	Institution	Research Topic	
Columbia U	olumbia U • MHD stability & mode control • Stellar x-ray spectroscopy*		 MSE – CIF & LIF* Ultra-fast imaging (~10⁶ /s)* 	
Comp-X	 CQL-3D kinetic modeling of RF heating & current drive 	NYU	 Planar LIF* Transport & RF modeling* 	
GA	 CHI equilibrium, RF physics Plasma control Poloidal field coil start-up 	ORNL	 HHFW & EBW physics & technology* Boundary and H-mode physics RF & transport modeling 	
INEL	 Tile surface & dust analysis* 	PSI	 Ultrafast imaging (~10⁶ /s)* 	
Johns Hopkins U	 USXR tomography & diagnostics 	SNL	 Plasma-facing material* 	
CHI plasma stability modeling	 Visible and infrared imaging 		 Material surface analysis* 	
	 Ultra-fast turbulence imaging CHI plasma stability modeling 	UC Davis	 FIReTIP n, B & fluctuations 	
		UC Irvine	 Turbulence & fluctuations* 	
LLNL	Edge SOL physics	UCLA	Reflectometry & fluctuations	
	 Edge plasma turbulence Stellar x-ray spectroscopy* 	UCSD	Fast probe, HHFW modelingFar SOL turbulent transport	
Lodestar	 Edge plasma stability and turbulence 	U Maryland	Transport & turbulence sim.*	
MIT	ECW-EBW modeling	U New Mexico	 Fast ion-plasma interactions* 	
	HHFW modeling	U Washington	CHI research	
U Rochester	MHD equil. with flow modeling*	U Wisconsin	NSTX neoclassical modeling	

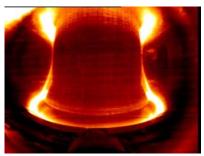
* Research cooperation funded by Theory, Technology, Diagnostic Innovations, SBIR, Plasma Science Programs


Worldwide NSTX Collaborations are Enhancing ST Contributions to ITPA-ITER


Extensive collaboration with MAST

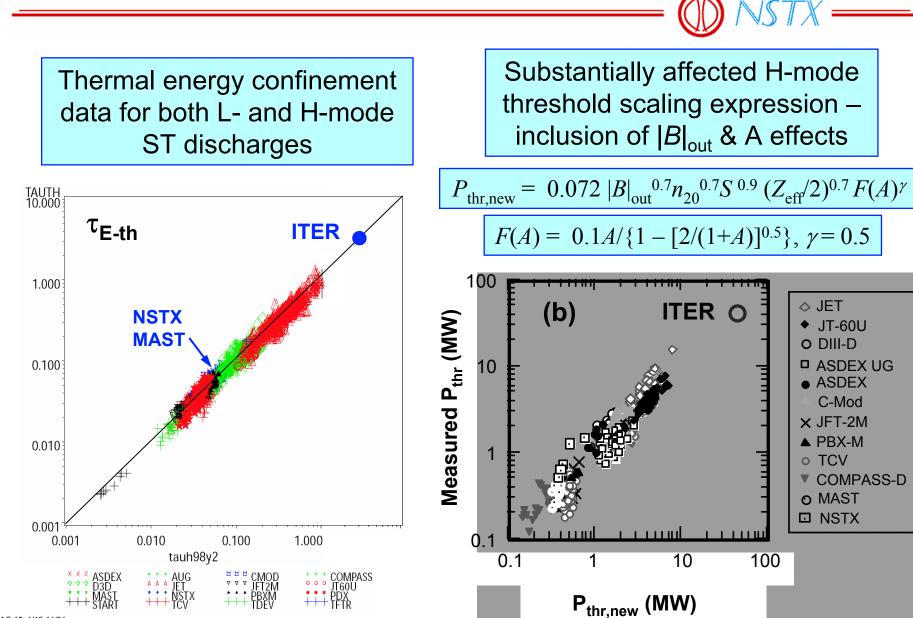
- NBI H-mode, ITB, τ_{E} scaling
- EBW H&CD, start-up (28, 60 GHz)
- Fueling, SOL pedestal studies
- Energetic particle characterization
- Strong participation in ITPA
 - DIII-D, C-Mod: RWM, Fast ion MHD, pedestal, core confinement, edge turbulence, x-ray crystal spectrometry
 - A and β effects: H-mode, ITB, ELM's & pedestal, SOL, RWM, NTM
- Broad exploratory ST's
 - Pegasus: Extreme low A, EBW
 - CDX-U/LTX: Li-plasma
 - TST-2, LATE: RF start-up, H&CD
 - **TS-3,4**: FRC-like β ~1 ST plasmas
 - HIT-II/HIT-SI, HIST: CHI physics

DIII-D (U.S.)

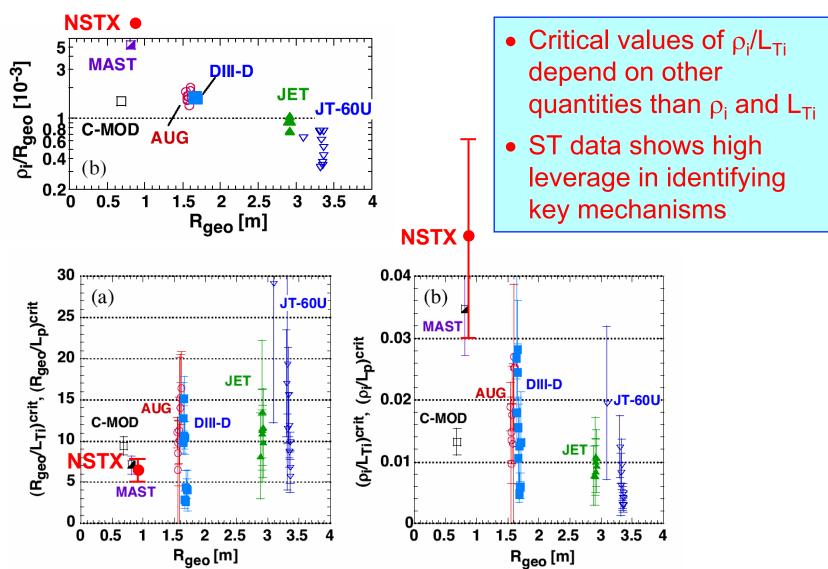


Pegasus (U.S.)

C-Mod (U.S.)


NSTX is Participating Pro-actively in ITPA Collaborations on Important Topics during FY04-06

Mutually beneficial joint experiments, comparisons, and database


•	Database activity	Contacts:
	– Improving the condition of global ELMy H mode and pedestal databases (MAST)	S. Kaye, R. Maingi
	 β degradation in ELMy H modes scaling 	S. Kaye
•	Transport physics	
	– High performance operations with $T_e \sim T_i$ (many devices)	B. LeBlanc
	 Dimensionlessly similar aspect ratio and core confinement (DIII-D) 	E. Synakowski
	 Dimensionlessly similar ITB scaling (MAST) 	M. Peng
	 Enhanced confinement with low momentum input 	B. LeBlanc
•	MHD	
	 Joint experiments on RWM physics (DIII-D, MAST) 	S. Sabbagh
	 NTM physics - aspect ratio comparison (MAST, DIII-D, ASDEX-U) 	D. Gates
•	Pedestal physics	
	 MAST/NSTX/DIII-D similarity 	R. Maingi
•	SOL	
	 Scaling of cross-field transport 	S. Zweben
•	Diagnostics	
	 Neutron/alpha source profile measurements 	L. Roquemore
	 First mirror lifetimes 	C. Skinner
1/12-		NSTX Research Plan-06

PAC-15,

NSTX Has Made Important Contributions to the ITPA Confinement and Threshold Databases

ST Exhibits ITB-Like Formation Conditions That Are Significantly Different From Those in Tokamaks

PAC-15, 1/12-14/04

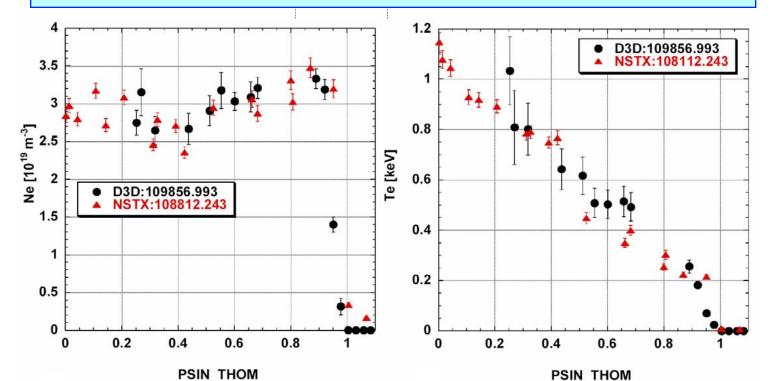
NSTX Research Plan-06

1-D & 2-D X-Ray Crystal Spectrometer of High Interest to Astrophysics Are Applied to NSTX, C-Mod & KSTAR 5-Way Collaboration: NSTX, C-Mod, KSTAR, LLNL, Columbia U SPRED X-Ray Tube Bitter et al, PRL 2003: benchmarked with TS VIPS data, and resolved key issues for comet and stellar flares Detector Spatially Resolved ArXVII Spectrum from Alcator C-Mod (Shots: 101503 & 101703; Time: 0.320 - 0.700 s) 500 **NSTX** System 400 Spatial Chords 300 Bolometer Array HFW 31.6 200 83.6 142. 162. C-Mod Data 200 300 100 400 500 Wavelength

PAC-15, 1/12-14/04

NSTX Research Plan-06

Collaboration with DIII-D Has Expanded to a Range of Topics From Operational Development ...


- Plasma control (Ferron, Humphreys, Leuer, Walker, Gates, Mueller, Kessel)
 - Development of rtEFIT algorithms, MIMO feedback control
 - Optimization of vertical feedback for high- κ , high- δ operation
- Adaptation of DIII-D techniques to achieve steady-state high- $\beta\tau$ discharges on NSTX (Wade, Menard)
- CHI startup (Schaffer, Lao, Brennan, Raman, Boedo, Ji)
 - Inclusion of open field-line currents in EFIT analysis
 - Theory of helicity transport and experiments to measure it
 - Stability of CHI equilibria
- Outer PF-coil startup (West, Menard, Ono)
- Plasma heating (Pinsker, Wilson)
 - HHFW: comparison of parametric decay and edge absorption
 - EBW: study of poloidally-phased launcher for direct X-B scheme

... to NSTX/DIII-D Comparison Experiments for the ITPA

- MHD (Heidbrink, Edgell, Strait, Garofalo, Reimerdes, Fredrickson, Sabbagh, Sontag, Menard)
 - Alfvén eigenmode similarity experiments
 - Real-time RWM identification algorithms
 - Resistive wall mode physics and control
 - Non-axisymmetric effects of halo currents on stability
- Transport (Petty, Greenfield, Osborne, Snyder, Evans, Synakowski, Kaye, Maingi)
 - Comparison of core transport with matched dimensionless parameters
 - Effect of aspect ratio on the pedestal of ELMy H-mode
 - Application of NSTX RWM coils to produce a stochastic boundary layer for ELM modification
 - TRANSP analysis of discharges with comparable engineering parameters
- Boundary (Boedo, Maingi)
 - Comparison of intermittency in NSTX and DIII-D
 - Comparison of broadband turbulent transport in boundary

Strategies for Similarity Experiments Have Been Identified to Investigate A-Dependence of Pedestal

- Early after transition nearly identical n_e and T_e profiles can be obtained on NSTX – DIII-D:
 - $I_p: 0.82 0.59 \text{ MA}$ $B_t: 0.45 0.62 \text{ T}$
 - P_{NBI} : 5.4 1.5 MW H_{89P} : 1.8 1.6
- A range of plasma conditions will be explored for comparison

Broad ST Collaborations Will Push New Limits to ST Parameter Space and Technologies

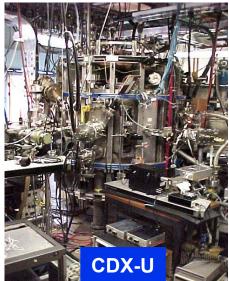
• Pegasus

- Very high I_p/I_{TF} and very small R/a (\rightarrow 1)
- Very over-dense plasmas
- Link with FRC, Spheromak

• HIT-II (HIT-SI)

- NSTX CHI improvements
- Steady helicity injection

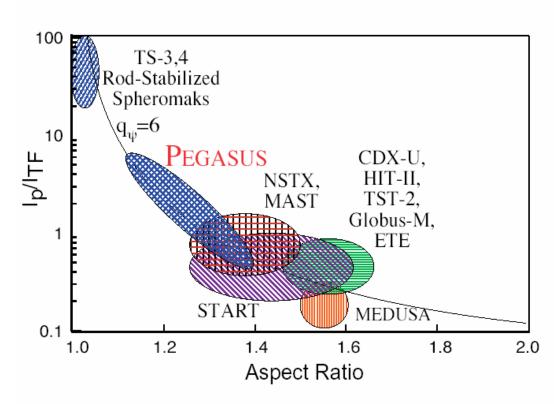
• CDX-U (LTX)


- Lithium surface-plasma interactions
- Upgrade to LTX to study low recycling, flat T regime beginning in FY06

• TST-2, LATE

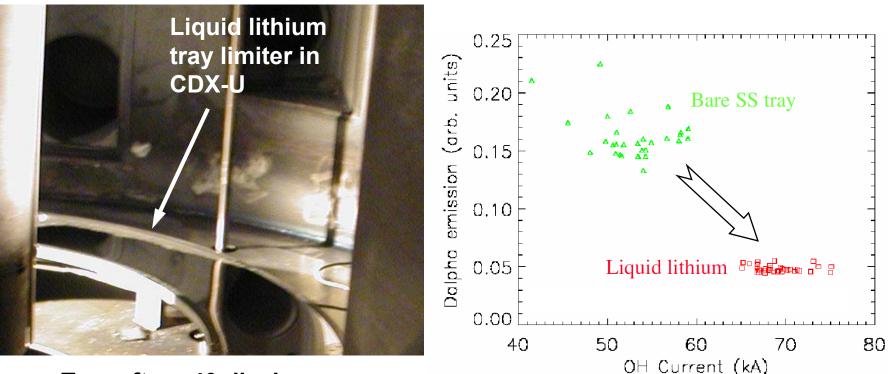
 Solenoid-free RF start-up & sustainment

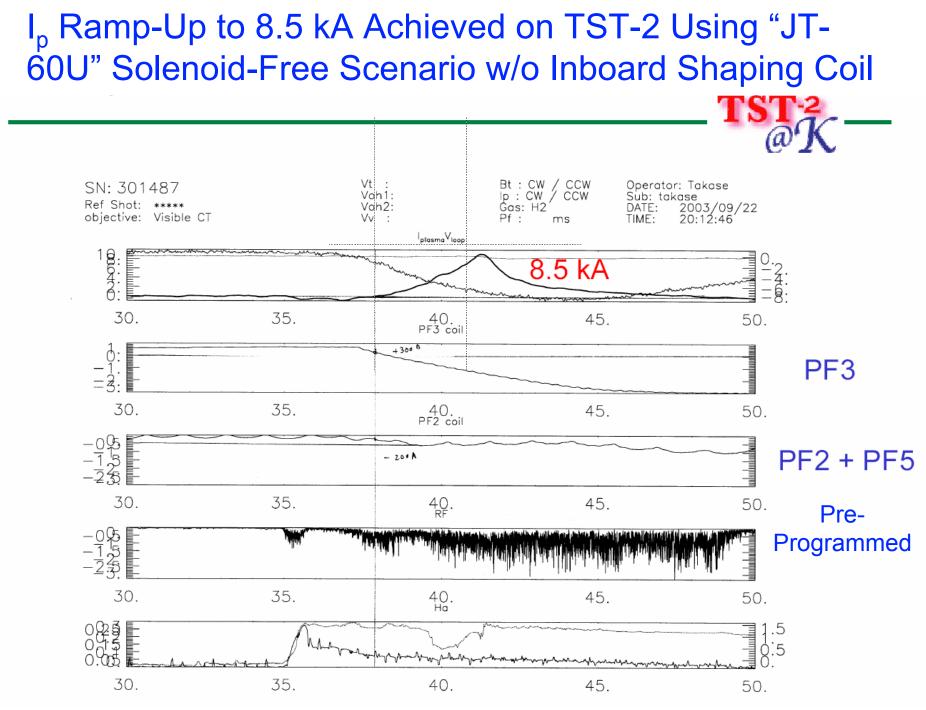
To Broaden ST Scientific Basis



Pegasus Explores ST Regimes As Aspect Ratio \rightarrow 1

- Stability, confinement at very high I_p/I_{TF} & as A \rightarrow 1
- Limits on β_t and Ip/I_{TF}
- EBW properties in very over-dense plasmas ($\varepsilon = 200 1000$)
- Physics connections to FRC and Spheromak





CDX-U Tested Lithium Surface-Plasma Interactions, Producing Encouraging Results

- First successful test of toroidal liquid lithium tray limiter
- Dramatic reduction in plasma edge fuel recycling, lowering impurity influx and loop voltage
- NSTX tests of lithium pellets and lithium wall coating in FY04-05

Tray after ~40 discharges.

NSTX Will Work Actively with the U.S. and World Fusion Community

- Research effectively addresses overarching scientific issues of importance to fusion energy
 - FY04-06 research will make substantial progress towards the goals in the 5-Year Plan
- A national & international research team will carry out this research
 - Highly collaborative national team
 - Proactive worldwide collaboration enhances contribution to ITPA and benefits NSTX research
- DIII-D & C-Mod collaboration has expanded
 - Controls, operations, start-up, heating, MHD, transport, boundary physics, and diagnostics
- Broad ST collaboration (Pegasus, MAST, HIT-II, CDX-U, TST-2, ...) will
 - Study extreme low A, CHI, Lithium coatings, and solenoid-free start-up
 - Broaden ST scientific basis for fusion