

Resistive Wall Mode Research Plan FY 2004 - 2006

S. A. Sabbagh*

for the

NSTX Research Team

*Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

15th NSTX Program Advisory Committee Meeting

January 12 - 14, 2004 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokvo JAERI loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching **U** Quebec

Department of Energ

<u>NSTX Preparing for Active Stabilization of High β</u> <u>Global MHD Instabilities</u>

Motivation

- Resistive wall mode (RWM) identified and associated with global rotation damping
- □ Beta collapse can follow rotation damping when $\beta_N > \beta_{N \text{ no-wall}}$

Goals

- Study RWM stability space, rotation damping, dissipation mechanism
- Determine aspect ratio effects in coordination with other devices
- Enhance mode detection system
- Design and implement active feedback stabilization system
- \square Use active mode control at low rotation to maintain high β long pulse

...even with budget related delays, research is largely on schedule

Key RWM physics studied under passive stabilizatioin

• FY2004 (red text - experiments delayed from FY03)

- Assess dependence of critical rotation frequency for RWM stabilization on beta, q profile, shaping, V_A (started FY02)
- Investigate RWM dissipation theories and compare to experiment
- Conduct NSTX / DIII-D RWM similarity XP: investigate aspect ratio dependence of rotation damping, critical rotation frequency, dissipation
- Compare theoretical / experimental mode structure using internal sensors
 - Measure n=2 RWM presently computed unstable in experiment at $\beta_N > 5.2$
- Use MSE to assess role of q in RWM stability / rotation damping
- Benchmark stability codes against experimental plasmas in (β_N, V_{ϕ}) space

• FY2005-future

- Analyze RWM physics and stabilization in long-pulse, high- β plasmas
- Study active feedback stabilization physics in low rotation plasmas

Rapid, global rotation damping observed during RWM

- Toroidal rotation profile evolution during RWM
- Rotation damping rate more than 5 times greater than when $\beta_N < \beta_{N \text{ no-wall}}$
- Occurs most frequently at lower B_t < 0.4T
 - Possible q effect on RWM stability
- Unlike localized JxB drag observed due to islands
- Quantitative experimental comparison to neoclassical viscous drag theory
 - initial study: agreement within a factor of 3 over many shots

RWM active feedback plan remains on schedule

• FY2003

- Finalized physics design of active coil set
- Decided on external coil set and began engineering design
- Initiated procurement of power supplies
 - delayed due to budget uncertainty
- Commission internal RWM/EFA sensor array electronics
 - installed and instrumented; calibration delayed to FY04
- FY2004 (critical elements: must not slip to maintain schedule)
 - Procure, install, and commission active coil set and power supplies; purchase and install DAQ for PCS
 - Bandwidth capability sufficient to suppress EFA

• FY2005

- Optimize control system time delays
- Active feedback on RWM at full capability of coil, algorithm optimization

• FY2006

- **Δ** Maintain high β plasmas with plasma rotation below the critical rotation frequency
- Determine options required for stabilization at higher β_N (e.g. internal coil)
 - Possibly modify NTM island formation

Active mode control modeling shows mode stabilization

Realistic time delay yields near-maximum stabilized β_N

RWM stabilization plan following 5-Year Plan timeline

FY04 RWM XPs properly address 5-Year Plan

- Proper emphasis on RWM in 2004 NSTX Forum XPs
- Flexible program with greater priority to XPs using active feedback coil when available
 - RWM experiments under passive stabilization
 - Passive stabilization physics of the RWM
 - Rotation damping physics in high β_N ST plasmas
 - Dissipation physics of the RWM
 - DIII-D/NSTX RWM physics similarity XP
 - RWM experiments using active feedback coil
 - Active RWM control physics
 - DIII-D/NSTX RWM physics similarity XP
 - External kink and control of RWM
 - Error field amplification joint experiment

RWM research schedule is following the 5-Year Plan

- Despite overall reduction of facility upgrade budget, support for RWM stabilization system has been maintained
- Delay in budget guidance delayed power supply procurement process
 - Total system implementation schedule tighter, not delayed
- Completion of difficult FY04 tasks needed for maintaining schedule
 - Procurement / installation of active stabilization system power supply
 - Active stabilization coil construction during FY04 run
 - Integration of power supply, coil, and control system

