Lithium Surface Experiments on the Current Drive Experiment-Upgrade

R. Kaita Princeton Plasma Physics Laboratory

National Spherical Torus Experiment Program Advisory Committee 16th Meeting

Princeton, NJ

9-10 September 2004

Contributors

R. Majeski,^a M. Boaz,^a P. Efthimion,^a G. Gettelfinger,^a T. Gray,^a D. Hoffman,^a
S. Jardin,^a H. Kugel,^a P. Marfuta,^a T. Munsat,^a C. Neumeyer,^a S. Raftopoulos,^a
T. Rognlien, ^b V. Soukhanovskii,^b J. Spaleta,^a G. Taylor,^a J. Timberlake,^a
R. Woolley,^a L. Zakharov,^a M. Finkenthal,^c D. Stutman,^c L. Delgado-Aparicio,^c
R. P. Seraydarian,^d G. Antar,^d R. Doerner,^d S. Luckhardt,^d M. Baldwin,^d
R. W. Conn,^d R. Maingi,^e M. Menon,^e R. Causey,^f D. Buchenauer,^f B. Jones,^f
M. Ulrickson,^f J. Brooks,^g D. Rodgers^h

^aPrinceton Plasma Physics Laboratory, Princeton, NJ
 ^bLawrence Livermore National Laboratory, Livermore, CA
 ^cJohns Hopkins University, Baltimore, MD
 ^dUniversity of California at San Diego, La Jolla, CA
 ^eOak Ridge National Laboratory, Oak Ridge, TN
 ^fSandia National Laboratories, Albuquerque, NM
 ^gArgonne National Laboratories, Argonne, IL
 ^hDrexel University, Philadelphia, PA

Work performed under USDOE Contract DE-AC02-76-CH03073

CDX-U goal - develop liquid lithium technology for fusion and study its interactions with plasmas

• CDX-U experiments support NSTX because of the potential of liquid lithium to address its power and particle handling needs

Safe handling and mechanical stability of liquid lithium shown in tray loading and plasma operations

- 34 cm major radius, 10 cm wide,
 0.64 cm deep
- Two halves with toroidal break
- Heaters for T_{max} ≈500°C

Empty limiter with heater leads and heat shields

- Argon glow discharge cleaning and tray heating removed surface coatings
- Lithium remains in tray with currents to ground ≈100A at B_p≈0.1T for ≈10ms

Liquid lithium in tray after ~40 discharges.

Particle pumping capability of liquid lithium shown by higher gas puffing needed to sustain density

Ability of liquid lithium to pump deuterium supported by reduced D_{α} emission

• Visible emission from view of center stack indicates strong reduction in global D_{α} with liquid lithium limiter

Impurity control with liquid lithium indicated by reduction of oxygen emission

Low Z_{eff} with liquid lithium limiter consistent with modeling based on CDX-U plasma parameters

- Tokamak Simulation Code calculations constrained by experimental estimates of electron temperature, density, and loop voltage
- Plasma resistivity with lithium limiter requires very low Z_{eff}

Improved plasma parameters with liquid lithium suggested by increase in ion temperature

- Initial ion temperatures determined spectroscopically from CIV line broadening show increase in liquid lithium limiter plasmas
- Ability of liquid lithium to reduce impurities requires measurements to be repeated with carbon pellet injection to compensate for low signal levels

Phased lithium implementation on NSTX begins with a static lithium divertor coating

- Evaporator to be inserted between shots
 - Heat load during plasma liquefies lithium on divertor surfaces
- Port covers and gate valves installed on upper and lower dome ports for retractable coating system
 - Retractable probe successfully tested with insertion of supersonic gas injector during FY04 NSTX operating period
- CDX-U will test coating system in early FY2005
 - Lithium evaporator undergoing tests in "off-line" chamber
- Operation planned for FY06 NSTX run

Next step is intended to address power handling and flowing liquid lithium technology issues

Concept courtesy of C.Eberle, ORNL

- Module area ~ 1 m²
- Flow liquid lithium at ~7-12 m/s to avoid evaporation at full power
- Decision on installation in FY08 requires following
 - Additional data from free liquid lithium surface CDX-U experiments
 - NSTX results with static lithium divertor coating
 - Liquid lithium jet results from Sandia National Laboratories
 - Free-surface liquid metal experiments and simulations at UCLA

