
NSTX Facility/Diagnostic Status

Masayuki Ono

NSTX PAC Meeting

Sept. 9 -10, 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland U New Mexico **U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo **JAERI Ioffe Inst** TRINITI KBSI **KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

NSTX Facility/Diagnostic Status Outline

- Facility and Diagnostic Status

 TF Joint Support Structure Issues and Resolution
- Draft FY05-07 Facility and Diagnostic Upgrade Plan
- Summary

NSTX successfully completed the run on Aug. 5

Completed 21.1weeks*

With 2460 plasmas

Supported 43 XPs & 9 XMPs Exciting FY 04 Research Activities

* Run details are available on the NSTX Web.

Met FY 04 Joule (SC7-6a) milestone: 18 weeks: Programmatic goal: 20 weeks

New Facility/Diagnostic Capabilities in FY04

Facility Improvements:

- Two (out of six) RWM Coils
- Control system upgrade for higher elongation (All areas)
 - Reduced latency (<1 msec)
 - rtEFIT2 external EF/RWM control coils (Macro)
- CHI capacitor bank (Macro)
- Li pellet injector (Interface)
- Supersonic gas injector (Interface)
- PF4 commissioning (Macro)
- Improved boronization schemes (Interface)

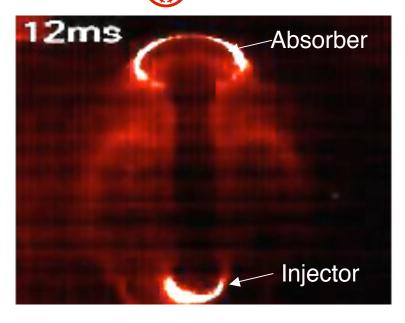
Diagnostic Improvements:

- MSE up to 8 channels (All areas)
- Fast tangential x-ray camera
- Divertor Mirnov arrays, internal RWM sensors (Macro)
- 51 channel CHERS (Transport, Macro)
- Scanning NPA (Transport, Macro, Wave/Part)
- USXR, FIRETIP upgrades (Macro, Transport)
- Edge rotation diagnostic to measure edge T_i, v_{φ,θ}, E_r (Transport, Wave/Part)
- Upgraded correlation reflectometry long λ turbulence (Transport)
- Fast cameras (Transport, Interface)
- RF Probe (Wave/Part)

4

Two RWM coils successfully installed during the run and energized using a rectifier power supply.

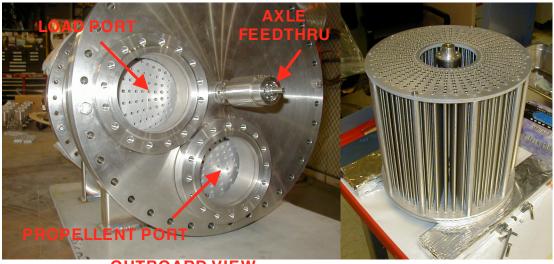
Yielded some exciting results:


- Locked-modes were shown to be stabilized in a factor of 2 lower density regime.
- Enabled start of exciting RWM investigation (Talk by S. Sabbagh)
- Used to control the plasma rotation velocity

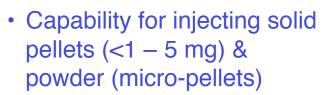
The full Six-element RWM coil system powered with the SPA (Switching Power Amplifier) supply is scheduled to be available for the FY 05 run.

Capacitor Bank for Transient-CHI Start-Up Commissioned

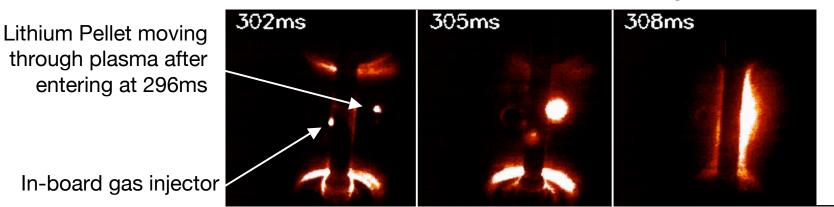
- Operated reliably up to 1 kV
- Produced reliable breakdown with lower gas pressure
- Generated $I_{p} \sim 140$ kA with $I_{inj} \sim 4$ kA in a few milliseconds
- Measured peaked profiles $T_{e0} \sim 16 \text{ eV}$



Future improvement possibilities:


- T_e increased with reduced pressure can we reduce it further by:
 - Gas + ECH injection into injector?
 - Higher voltage > 1 kV?
- Plasma stability/controllability
 - Energize absorber coils
 - Need to develop control algorithms

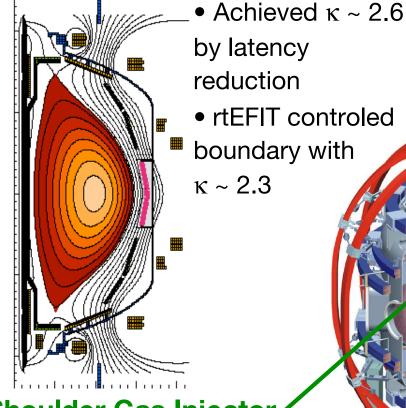
Injected Lithium Pellets into NSTX Discharges


OUTBOARD VIEW

400 BARREL TURRET

- 10 200 m/s radial injection
- 1 8 pellets per discharge
- 400 pellet capacity
- Need to optimize performance

Lithium vapor spreading along the center-stack


Lithium "vapor ball" surrounding pellet as it approaches the center-stack

Facility Upgrade Highlights Continue

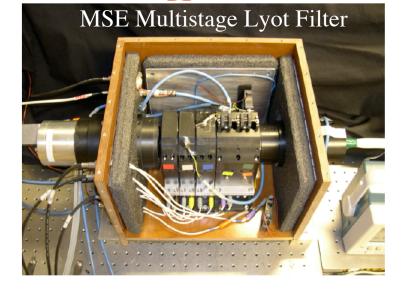
SGI

Plasma Control System

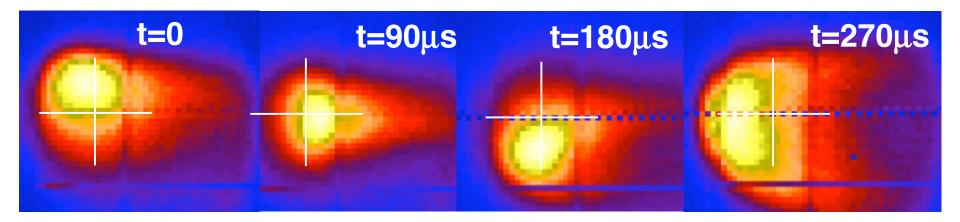
Shoulder Gas Injector

• Successfully utilized for H-mode studies

Supersonic Gas Injector

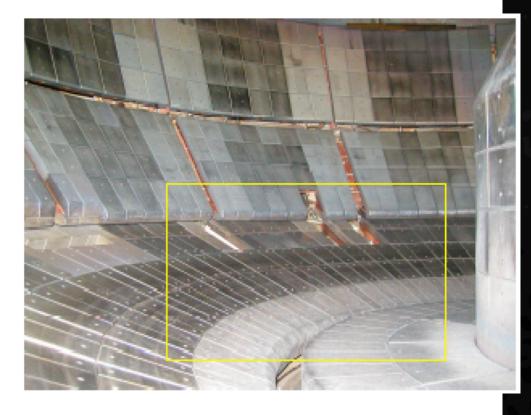

• Preliminary analysis shows improved fueling with collimated gas flow

PF-4 (previously installed but not energized)


• Energized using RWM power supply for poloidal field coil start-up experiment ₈

MSE and Fast X-ray Camera Commissioned

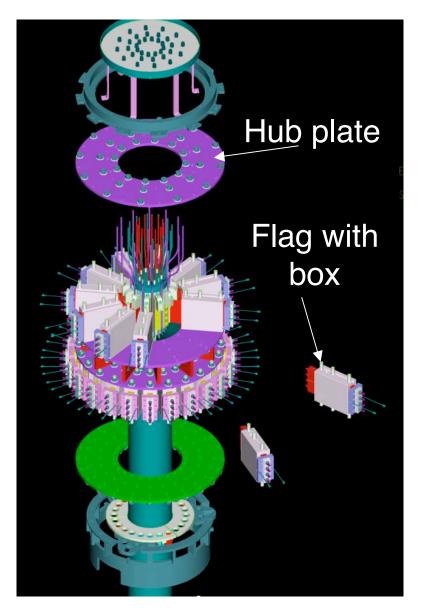
〈 Motional Stark Effect (MSE) diagnostic based on the collisionally induced fluorescence (CIF) from heating neutral beams took profile data with 8 channels during experiments (Nova - Fred Levinton's talk)



• Images of the soft x-ray emission along tangential sightlines recorded by an ultra-fast camera with time resolution down to $\sim 2 \ \mu s$

Hiroshima Divertor visible camera shows clear differences between Type I (large) and Type V (small) ELMs

 < Periodic Type V ELMs interrupted by a Type I ELM (approximate camera field of view in LHS yellow box)

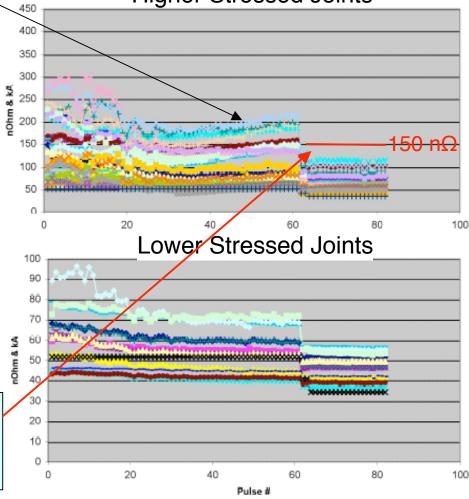


Inner separatrix

Outer strike point

Nishino (U. Hiroshima), Roquemore, Maingi (ORNL)

TF Joint Behavior Has Been Monitored and Studied Throughout the Run


- In January, an integrated system test was conducted to qualify the machine.
- The measured resistance of each joint was well below the <700nΩ design goal at 4.5kG and the temperature rise was in accord with expectations.
- However, a closer examination of the data and trends over time raised some concerns.

New Data and Analysis Has Identified Some Concerns About the TF Joints

- Small upward drift in the joint resistances observed over ~4 months of operation.
 - All remained well below $700n\Omega$.
- Temperature and strain gauge measurement also revealed changes over time.
- Subsequent measurements showed larger than expected TFflag displacements.
- New simulations and bench tests indicate the measurements are consistent with larger than expected joint "lift-off".

To assure safe device operation, we instituted TF operational limit of 3kG with R_{max} <150 n Ω in July.

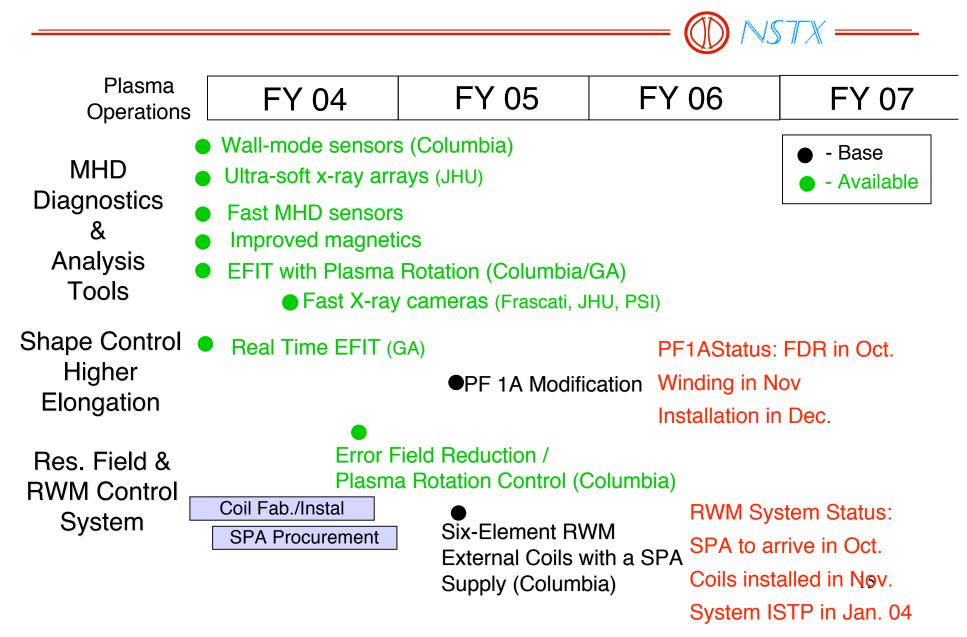
TF Joint Resistance in nΩ [Start-of-Flat-Top. Test Shots] Higher Stressed Joints

Working to Resolve These Concerns

- Progress in understanding the TF joint behavior:
 - Movement of flag joints confirmed and quantified through a number of measurements
 - Modeling suggests that the cause of the flag movements is softer than expected epoxy fill in the flag box
 - Bench tests of the removed flags did confirm this shortcoming
 - Alternate fill material being tested to give adequate strength for the next run

Project decision: Replace epoxy in all the flag joints

- Outage schedule developed:
 - Complete the in-vessel work and pump down in mid-Nov. 04
 - Complete the magnet assembly in Dec. 04
 - ISTP of magnets in Jan. 05 and plasma operation in Feb. 05 (similar to this year)
- Present Status: Outage activities progressing on schedule
 - Central TF-OH bundle is moving to the work stand
 - Lower flag box disassembly completed


Adjustments of Facility/Diagnostic Plan

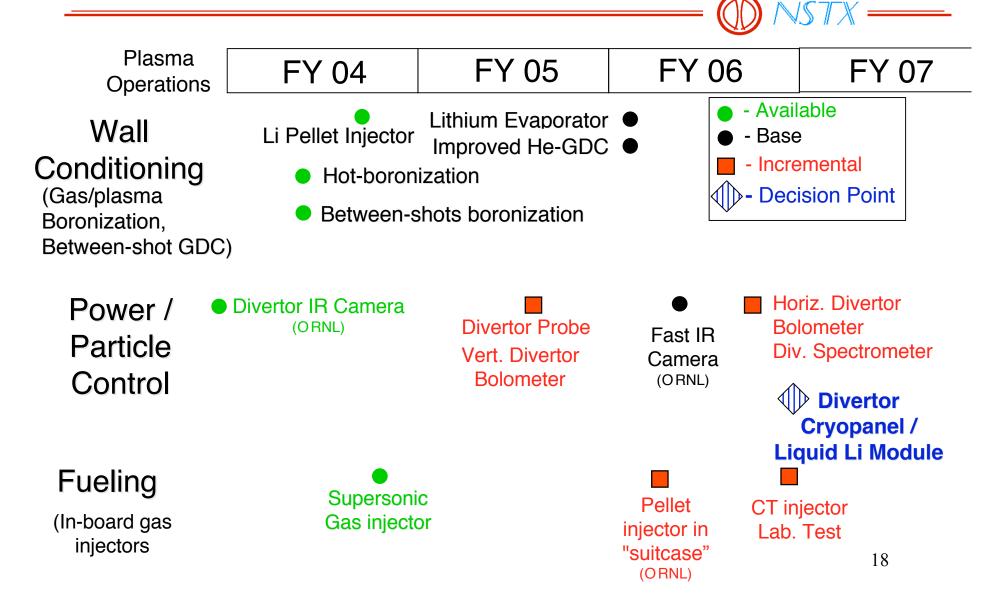
- Taking advantage of the center-stack removal:
 - Implement PF 1A coil upgrade one year ahead of schedule for better shaping capability simultaneous high κ and δ for advanced ST operations —
 - Repair/improve plasma current Rogowski coils
- Remaining facility/diagnostic upgrade plan:
 - Complete full RWM coil with SPA power supply
 - Install high-k scattering system and 10 additional MPTS channels
 - Install HHFW antenna BN side limiter for NBI protection
 - Delay purchase of CHERS spectrometers and detectors by one year
 - Delay the lithium evaporator by one year but continue R&D
 Emphasize experiments with lithium pellet injector in FY 05
 Higher priority on moveable between-shots GDC probe than neutron collimator

114465 Ρ̈́F1A

MHD Mode Stabilization **DRAFT**

Opportunity Areas are Shaping and RWM Controls.

DRAFT **Confinement and Transport Exciting Opportunities For Advanced Fluctuation Diagnostics** Plasma FY 04 FY 05 FY 06 FY 07 Operations - Base (F Tor. CHERS (51 ch) Edge Pol CHERS - Available Profile **ERS** Upgrade Edge Rotation Spect. Diagnostics MPTS 20 ch, two laser • MPTS 30 ch MPTS Third laser • FIReTIP 4 ch (UCD) ●FIReTIP 6 ch (UCD) MSF/CIF MSE / CIF MSF / LIF 4-8 ch (Nova) 12-14 ch (Nova) (Nova) Energetic Neutron Collimator **Fast Loss Ion Probe** Particles Low k Imaging Prototype High k Low k Reflectometer (UCLA) Fluctuation Reflectometer Microwave Scattering(UCD) Diagnostics Gas-puff Imaging(LANL, PSI) Reciprocating probe (UCSD) 16


Non-Inductive CD Systems DRAFT

Enhancement Opportunity areas are EBW and Solenoid-free Start-up Plasma FY 04 FY 05 FY 06 FY 07 Operations - Available - Base HHFW **HHFW Feed** - Incremental (6MW) Improvement - Decision Point **EBW System** Construction Prelim Design O-X-B EBW Emission Expts **Begin Site Prep** EBW -E / -CD System Design / Costing DIII-D/MAST Collaboration Expts. Prelim Complete Procure Design Site Prep **EBW** Dynamo-head CHI **Tubes** Transient CHI For Helicity-Transport $(I_{T} = 0.5 \text{ MA})$ **Capacitor Bank** (UCSD) (U. Washington) High Power EBW System: Requires significant capital PF Coil investment Start-up **PF 4 Energization** Working to minimize the cost To explore collaboration opportunities

Boundary Physics

Exciting Enhancement Opportunity in Core Fueling and Boundary Physics

DRAFT

NSTX Facility/Diagnostic Status Summary

- Productive FY 04 run completed on Aug. 5, 2004
 - Successfully operated for 21.1 weeks with 2460 plasmas
 - Met the Joule milestone of 18 weeks and programmatic goal of 20 weeks.
- Many exciting new capabilities were implemented
 - RWM coil energization, CHI capacitor bank, rapid boronization, PF4...
 - MSE, Fast tangential X-ray cameras, Divertor cameras, Improved GPI...
- TF joint monitoring showed larger than expected movement
 - TF limit of 3 kG was imposed during the last month of operation
 - The cause of movement traced to softer than expected epoxy fill
 - TF bundle has been removed and improved epoxy fill will be implemented
- Some upgrade adjustments made for the outage
 - Accelerate PF 1A upgrade
 - Complete RWM coils with SPA, high-k scattering, 10 extra MPTS channels
 - Delay lithium evaporator and poloidal CHERS detector by one year

Restart in Feb. 2005 with significantly improved facility and diagnostic capabilities for up to 21 run weeks