Supported by

Draft NSTX Program Letter 2005 - 2007

Martin Peng

Oak Ridge National Laboratory @ Princeton Plasma Physics Laboratory

On behalf of the NSTX National Team

NSTX PAC-16th Meeting

September 9 – 10, 2004 PPPL

Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL UC Davis** UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo JAERI loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

NSTX Program Letter Provides Inputs to Support DOE Review of NSTX Collaboration Research Proposals

- 8/04 Notice for NSTX research collaboration proposals: <u>http://www.science.doe.gov/grants/FAPN04-24</u> indicates availability of NSTX Program Letter
- Letter of Intent to DOE by 10/1/04; Proposal by 10/14/04
- Accounting for recent progress, and facility & research plans, Program Letter describes 2005-2007 NSTX
 - Program objectives
 - Major scientific areas of research
 - Relative priorities among elements of each scientific area
 - Collaboration opportunities for these elements
- Seek PAC review and advice on priorities and balance
- Submit Program Letter to DOE and publicize on 9/15/04

NSTX research contributes to campaigns guided by FESAC Priorities Panel's Overarching Themes

NSTX

<u>Campaign</u>: Understand the role of magnetic structure on confinement, & plasma pressure limits

Stability pressure limits & magnetic reconnection vs. A, shape, profile, q & flows, for internal & external modes, with $V_{flow}/V_A \le 0.4$ & unity β ; helicity transport.

Overarching Themes:

O1: Understand dynamics of matter and fields

Microscopic ion, electron & tearing turbulence measurements & theory comparison, over wide range in β , flows & magnetic shear, with good average curvature and high trapping.

<u>Campaign</u>: Understand & control the processes that govern confinement of heat, momentum, and particles

<u>Campaign</u>: Learn to use energetic particles & e-m waves to sustain and

control high temperature plasmas

E-M waves in over-dense plasmas; phase space manipulation with high electron trapping; energetic ions with large orbits; Alfvén eigenmodes and turbulence with $V_{fast}/V_A >>1$.

O2: Create and understand controlled burning plasma

O3: Make fusion power practical

Physics of ELMs, pedestal, SOL turbulence & high divertor heat flux, with large in/out asymmetry; Li coatings & liquid surface interactions with plasma.

<u>Campaign</u>: Learn to control the interface between a 100 million degree plasma and its room temperature surroundings

NSTX contributions also support the DOE SC Strategic Goals for Fusion Energy Sciences Program

NSTX

<u>Campaign</u>: Understand the role of magnetic structure on confinement, & plasma pressure limits

Stability pressure limits & magnetic reconnection vs. A, shape, profile, q & flows, for internal & external modes, with $V_{flow}/V_A \le 0.4$ & unity β ; helicity transport.

FES Program Strategic Goals:

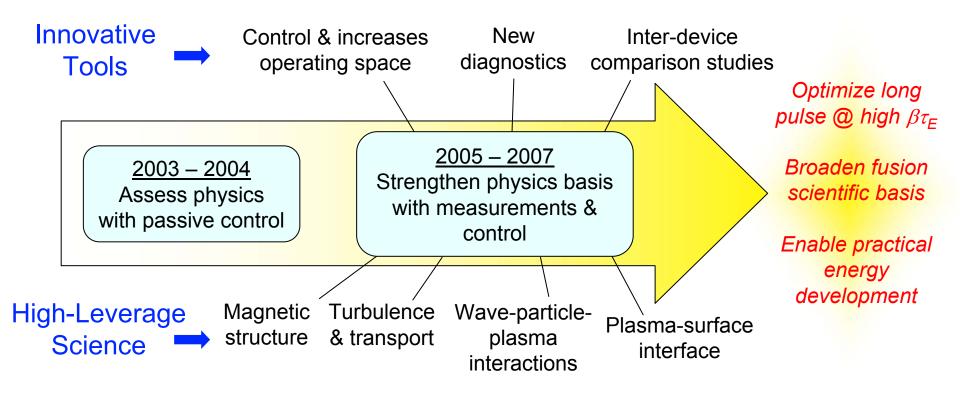
- 1) Demonstrate feasibility with burning plasmas
- 2) Develop fundamental understanding and reliable predictive capability

Microscopic ion, electron & tearing turbulence measurements & theory comparison, over wide range in β , flows & magnetic shear, with good average curvature and high trapping.

<u>Campaign</u>: Understand & control the processes that govern confinement of heat, momentum, and particles

Campaign: Learn to use energetic

particles & e-m waves to sustain and control high temperature plasmas


E-M waves in over-dense plasmas; phase space manipulation with high electron trapping; energetic ions with large orbits; Alfvén eigenmodes and turbulence with $V_{fast}/V_A >>1$.

- *3) Determine the most promising approaches and configurations*
- 4) Develop necessary new materials, components, and technologies

Physics of ELMs, pedestal, SOL turbulence & high divertor heat flux, with large in/out asymmetry; Li coatings & liquid surface interactions with plasma.

<u>Campaign</u>: Learn to control the interface between a 100 million degree plasma and its room temperature surroundings

NSTX 2005-2007 focus: strengthen physics basis with advanced measurements and control

- Strengthen NSTX National Research Team
- Meet broad new scientific opportunities and challenges

NSTX collaborators make crucial contributions and are reviewed by DOE every 3 years

Collaboration up	for renewal	2005	2006	2007		
Columbia U	MHD stabiStellar x-ra	-		Johns Ho		
Comp-X	CQL-3D ki heating & c	netic modelir current drive	•	Nova Pho	NONICS	 MSE – CIF & LIF Ultra-fast imaging (~10⁶ /s) Planar LIF
GA	 CHI equilib Plasma co Poloidal fie 	ntrol	•	ORNL		 HHFW & EBW physics & technology Boundary and pedestal physics RF & transport modeling
LANL	 Ultra-fast to CHI plasma 			UC Davis		FIReTIP n, B & fluctuations
LLNL	Edge SOL			UCLA		Reflectometry & fluctuations
	 Edge soc Edge plasr Stellar x-ra 	na turbulenc		UCSD		 Fast probe HHFW modeling Far SOL turbulent transport; Li limiter
Lodestar	Edge plasm turbulence	-	Ind	U New M	exico	Fast ion-plasma interactions
MIT	• ECW-EBW	/ modeling		U Washin	gton	CHI research
	• HHFW mo	-		U Wiscon	sin	NSTX neoclassical modeling

Cooperation with OFES Theory, Technology, Diagnostic Innovations & SBIR programs.

International Cooperation

INEL	Tile surface & dust analysis	SNL	 Plasma-facing material
NYU	Transport & RF modeling		 Material surface analysis
PSI	 Ultra-fast imaging (~10⁶ /s) 	U Maryland	Transport & turbulence simulation

1) Understand the role of magnetic structure on plasma confinement and the limits to plasma pressure in sustained magnetic configurations – (I)

Relative Research Priority	Research Elements	Relative Collaboration Opportunity
М	Equilibrium reconstruction and tool development for between-pulse and post-pulse analysis, accounting for sonic flow, energetic ions, and very high beta	H*
Н	Real-time plasma control, including capability for implementing current initiation, ramp-up, and sustainment strategies	Н*
Н	Characterize and understand effects on internal modes from sheared sonic flows Compare with theory and modeling 	Μ
Η	Characterize and understand effects on external beta-limiting modes from Nearby passive conductors External and plasma induced non-axisymmetric fields Plasma rotation and its damping Active non-axisymmetric magnetic field modifications Plasma shape modifications Changes in aspect ratio Compare with theory and modeling 	H*

1) Understand the role of magnetic structure on plasma confinement and the limits to plasma pressure in sustained magnetic configurations – (II)

Relative Research Priority	Research Elements	Relative Collaboration Opportunity
Н	 Characterize and understand effects on tearing modes from Plasma profiles Externally driven, localized currents Changes in aspect ratio Compare with theory and modeling 	H*
М	Characterize and understand effects on H mode pedestal and ELM properties from Particle losses and recycling Plasma edge configurations and conditions Changes in aspect ratio (in/out asymmetry) Compare with theory and modeling 	H*
М	Characterize and understand effects on bootstrap and diamagnetic currents from – Low aspect ratio (large in/out asymmetry) – Order unity beta – Compare with theory and modeling	Μ
Н	Characterize and understand magnetic reconnection and stability associated with - Co-axial helicity injection - Outer poloidal field only plasma initiation - Compare with theory and modeling ch elements affected by the 2004 NSTX collaboration renewal proposa	H*

2) Understand and control the physical processes that govern the confinement of heat, momentum, and particles in plasmas – (I)

Relative Research Priority	Research Elements	Relative Collaboration Opportunity
М	Characterize global confinement scaling	L
H	Characterize and understand core transport coefficients and fluxes (thermal, particle, momentum) as functions of local plasma parameters in core (e.g., internal transport barriers) and edge confinement (e.g., H-mode pedestal) regimes – Compare with theory and modeling	М
Н	Characterize and understand spontaneous and driven plasma flows and assess their impact on core and edge transport properties – Compare with theory and modeling	М
М	Characterize and understand scaling of local transport properties as function of dimensionless parameters, including the aspect ratio – Compare with theory and modeling	М
H	Characterize and understand low and high k core plasma turbulence mechanisms in plasmas with both low and high core confinement, including - Divertor L-mode - Divertor H-mode - Inboard limited - Compare with theory and modeling	Н*

2) Understand and control the physical processes that govern the confinement of heat, momentum, and particles in plasmas – (II)

Relative Research Priority	Research Elements	Relative Collaboration Opportunity
Н	Characterize and understand plasma turbulence, transport, and stability properties in edge plasmas, including flows and field structure in – Divertor L-mode	H*
	 Divertor H-mode and pedestal Inboard limited Compare with theory and modeling 	
М	Update & apply neoclassical transport model accounting for effects of sonic flows, flow shears and very high beta – Compare with theory and modeling	M*
М	Innovative time & space-resolved plasma T _e & B fluctuations measurements	Н
Н	Update and apply linear and nonlinear gyrofluid and gyrokinetic simulation codes on microturbulence to plasma measurements with sonic flows and order unity β	H*

3) Learn to use energetic particles and electromagnetic waves to sustain and control high temperature plasmas – (I)

Relative Research Priority	Research Elements	Relative Collaboratio n Opportunity
Η	Characterize and understand solenoid-free EBW initiation, ramp-up, and sustainment (emission, launching, mode conversion, propagation, absorption by passing and trapped electrons, current generation, etc.) – Compare with theory and modeling	H*
H	Participate in analysis, design, and construction of EBW sources, transmission systems, and launchers, including possible in-kind contributions of equipment	H*
H	Characterize and understand HHFW heating and current drive (launching, launcher-sheath-edge interactions, propagation, absorption by electrons, current generation, absorption including effects of fast ions, linear mode conversion, nonlinear mode coupling, etc.) – Compare with theory and modeling	H*
M	Characterize and understand early HHFW injection to assist current initiation and ramp-up – Compare with theory and modeling	M

3) Learn to use energetic particles and electromagnetic waves to sustain and control high temperature plasmas – (II)

Relative Research Priority	Research Elements	Relative Collaboratio n Opportunity
Μ	Characterize and understand interactions between fast-ion driven modes and the fast ions, accounting for effects of - Fast ion energies, density, and profiles - Plasma profiles - Changes in aspect ratio - Compare with theory and modeling	M*
Н	Characterize and understand NBI current drive, accounting for effects of fast ion driven instabilities; – Compare with theory and modeling	Μ
М	Characterize and understand effects of energetic ions, finite gyro-orbits, and large guiding center orbits on bootstrap and diamagnetic currents at low aspect ratio; – Compare with theory and modeling	М
H	Innovative time and space-resolved HHFW wave launch, conversion, coupling, propagation, and absorption measurements	M

4) Learn to control the interface between a 100-million-degree plasma and its normal temperature surroundings.

Relative		Relative
Research	Research Elements	Collaboration
Priority		Opportunity
Н	Characterize and understand plasma edge fluxes, including	H*
	 Plasma particle and heat fluxes, and impurity fluxes 	
	 Erosion and redeposition of divertor and first wall 	
	materials	
	 Plasma power distribution 	
	 Effects of changing aspect ratio (in/out asymmetry) 	
	 Compare with theory and modeling 	
Н	Characterize and understand effects on plasma edge and SOL	H*
	properties from	
	 Edge & SOL turbulence 	
	 Intermittent ejection of filaments and "blobs" 	
	 ELMs and edge transport barriers (H-mode pedestals) 	
	 Changes in aspect ratio (in/out asymmetry) 	
	 Compare with theory and modeling 	
М	Characterize and understand effects of wall conditioning and	М
	surface coating (such as boron, lithium, etc.) on	
	 Particle and impurity recycling 	
	 Plasma density 	
	 Dust formation and distribution 	
	 Compare with theory and modeling 	
М	Innovative time and space resolved edge-SOL-divertor plasma	Н
	measurements	
*Researc	h elements affected by the 2004 NSTX collaboration renewal propos	al review

PAC Advice on Program Letter Will Steer NSTX Research Collaboration

- Contribute to Campaigns and guided by Overarching Themes under consideration by FESAC Priorities Panel
- Support DOE SC Strategic Goals for Fusion Energy Sciences, including ITER burning plasma
- Provide input to inform DOE's selection of winners
- Influence the final writing of proposals
- Build stronger and well focused NSTX National Team