

General Atomics

Columbia U Comp-X

The NSTX FY2005 Run Plan

Jonathan Menard

Princeton Plasma Physics Laboratory

Presented for the NSTX Team

17th NSTX PAC Meeting

January 20 - 21, 2005

NSTX is advancing fusion science through research on many topical fronts

• NSTX research goals reflect an ultimate goal of integrating:

- Sustained operation with $\boldsymbol{\beta}$ far above the no-wall stability limit
- Plasmas with benign, or possibly beneficial fast-ion-driven instabilities
- An understanding of core thermal transport to the point of controlling it
- Good edge stability and transport while avoiding reactor damage
- Plasma initiation techniques to eliminate the solenoid in a reactor
- These goals apply to tokamak fusion reactors in general and are not unique to the spherical torus.
- This presentation will describe:
 - Organization of the NSTX research team
 - Overview of NSTX research goals
 - Specific plans for the FY05 run to achieve these goals
 - NSTX contributions to ITER-relevant research & the world program

Experimental Task Group Structure

• Experimental Task (ET) groups, leaders, and deputies:

- 1. Macroscopic Stability*
- 2. Wave-Particle Interactions*
- 3. Transport and Turbulence*
- 4. Edge Physics*
- 5. Solenoid-free Startup
- 6. Integrated Scenario Development
- Cross-cutting/Enabling

- (D. Gates, S. Sabbagh)
- (C. Phillips, R. Wilson)
- (S. Kaye, D. Stutman)
- (R. Kaita, J. Boedo)
- (R. Raman, M. Bell)
- (R. Maingi, C. Kessel)
- (All ETs eligible)

* → tightly coupled to Priority Panel & ITPA structures

Overview of highest priority research goals:

1. Macroscopic Stability

Produce and characterize strongly shaped rotating plasmas close to the "wall-stabilized" pressure limits with error field correction.

2. Wave-Particle Interactions

Assess the effects of supra-Alfvénic fast-ion-driven instabilities on driven current in plasma core.

3. Core Transport and Turbulence

Characterize the effects of variations in the magnetic shear and gradients in T_e on electron transport in low-aspect ratio plasmas.

4. Edge Physics

Characterize the plasma edge pedestals and scrape-off layer of low-aspect ratio, high confinement, high P/R plasmas.

5. Solenoid-free Startup

Increase plasma current and duration of both CHI and PF-only generated solenoid-free startup plasmas.

6. Integrated Scenario Development

Characterize strongly-shaped low-A plasmas with high bootstrap fraction and low loop-voltage lasting for many current redistribution times.

Ability to operate far above the ideal-plasma no-wall limit reliably would significantly improve the efficiency of future fusion reactors

- Goal of sustained operation near ideal-wall limit motivates strong emphasis on error-field and RWM physics research
 - Potential for high-performance (Q>5) steady-state scenarios in ITER
 - Important element in achieving fully non-inductive operation in NSTX
 - NSTX is contributing strongly to this topical area with several new capabilities:

The full NSTX RWM/EF control system will be available and used by several topical groups in FY05

- All major hardware components now installed
 6 RWM/EF coils (vs. 2 coils in FY04)
 - Opposing coils to be connected anti-series
 - Odd-n only, but n=2 possible with coils in series
 - Switching Power Amplifier (vs. TRANSREX in FY04)
 - Can drive 3 coil-pairs independently
 - 7kHz switching frequency \rightarrow < 1% ripple
- RWM/EF coil current control plan is in place
 - 1. Start with pre-programmed current capability
 - 2. Coil currents proportional to PF coil currents for pre-programmed error-field correction
 - 3. Implement real-time mode detection algorithms
 - 4. Develop closed-loop feedback algorithm
 - 5. Close feedback loop, begin control studies in FY06

Macroscopic Stability Overview

• FY05 research goal

- Produce and characterize strongly shaped rotating plasmas close to the "wall-stabilized" pressure limits with error field correction
- Study impact of enhanced shaping (high κ + high δ) from new PF1A coils on macroscopic stability limits both pressure and current limits
- Study impact of error field correction and RFA suppression on rotation dynamics, stabilization of RWM, and access to the ideal-wall limit
 - Study locking threshold physics, further correct intrinsic error fields in NSTX
 - Study critical rotation physics, develop rotation control techniques
 - Measure dispersion relation of stable RWM using MHD spectroscopy
- Utilize enhanced diagnostic and reconstruction capabilities to study stability physics near the ideal-wall limit (MSE & hi-res edge Thomson)
 - Already published sustained operation above the no-wall limit for $\tau >> \tau_{Wall}$
 - But, the ideal-wall limit is more sensitive to the q, p, and Ω_{ϕ} profiles.

Macroscopic Stability Experiments

Impact of enhanced shaping

- Stability limits vs. normalized current at high δ with new PF1A
 - Quantify stability changes with higher edge q and q-shear

• Error fields and RWM/RFA

- Error-field/locked-mode physics studies using RWM coils
 - Understand mode-locking threshold physics, correct NSTX error fields
- Suppression of resonant field amplification at high β_{N}
 - Understand & suppress response to intrinsic & applied error fields
- Active control of rotation damping in RWM plasmas
 - Quantify and control flow damping from RWM & other modes

Macroscopic Stability Experiments (continued)

- RWM/EF physics
 - MHD spectroscopy of wall-stabilized high β plasmas
 - Measure marginally stable RWM frequency and damping rate by measuring plasma response to applied n=1 traveling wave and compare to theory
 - DIII-D/NSTX RWM similarity experiment
 - Explore RWM physics in devices with similar Ω_{ϕ} / ω_{sound} , different Ω_{ϕ} / $\omega_{Alfvén}$
 - Dissipation physics of the RWM
 - Use critical rotation measurements to study dissipation physics
- Other global MHD
 - Onset and saturation characteristics of the 1/1 internal kink mode
 - Study effect of rotational shear vs. diamagnetic flows on 1/1 stability at high- β
 - Aspect ratio effects near high β_{P} equilibrium limit
 - Examine aspect ratio dependence of rotation effects on high $\beta_P \& \beta_N$ equilibria
 - Study of NTM excitation by fast-ion-driven instabilities
 - Explore fundamental physics of NTM seeding

NSTX macroscopic stability experiments are tightly linked to ITPA high-priority research

Low aspect ratio + new MHD control and diagnostic capabilities → strong role in the MHD, disruption, and control (MDC) ITPA group

- MDC-2 Joint experiments on RWM physics
 - Studying RWM physics across devices aids understanding & application to ITER
 NSTX is only ST with significant wall stabilization, active coils, and MSE
- MDC-4 NTM physics aspect ratio comparison
 - Improve understanding of NTM seeding and mode coupling
- MDC-5 Sawtooth control for NTM suppression
 - 1/1 mode stability experiment to improve understanding of sawtooth and NTM
- MDC-6 Low-beta error-field experiments
 - ST offers unique low-B_T regime and geometry for understanding locking physics

Good confinement of energetic particles is an obvious requirement for any burning plasma device

- Fast-ion-driven instabilities and associated energetic particle diffusion or loss could significantly impact device performance
 - Expect "sea" of high-n TAE modes in future tokamak reactors such as ITER
 - As in ITER, NSTX fast ions have $v_{fast} >> v_A$ and can excite several instabilities:

Wave-Particle Interaction Overview

DNSTX

• FY05 research goals:

Assess the effects of supra-Alfvénic fast ion driven instabilities on driven current in plasma core.

- Study impact of fast-ion-driven instabilities on driven current
 - NSTX $v_{\text{NBI-fast}}$ / $v_{\text{A}} \approx v_{\text{NB, }\alpha}$ / v_{A} in ITER unique opportunity for ST contribution
 - Investigate changes in current profile resulting from fast-ion diffusion
 - Develop methods to modify fast-ion-driven instability behavior (NBI, HHFW)
- Integrated study of fast-ion MHD mode stability
 - Compare mode type, ω, **k**, and amplitude to *AE theory **w/ known q profile**
 - Determine dependence on plasma parameters especially operational scenario
 - Correlate fast ion loss/diffusion (FLIP, NPA, neutrons) with MHD activity
- Study HHFW edge interactions, loading, and core heating
- Measure EBW emission to model and optimize EBW launcher

Wave-Particle Interaction Experiments

- Current profile modifications from fast-ion MHD
 - Characterize J evolution of existing nearly "hybrid" scenarios
 - Infer fast-ion diffusion by comparing diagnostic signatures to model (TRANSP)
 - Develop techniques to modify fast ion population and MHD
 - Needed for controlled study of fast-ion MHD impact on background plasma
 - Tools: NBI beam source, timing, voltage, target density (+ possibly HHFW)
- Fast-ion MHD and associated fast-ion diffusion and loss
 - Study of fishbone mode and the beam-ion distribution function w/ SSNPA
 - Vary fast-ion ω_{bounce} and $\omega_{\text{precession}}$ study fast-ion diffusion caused by fishbone
 - Study of TAE stability vs. central shear and q(0)
 - Use improved knowledge of q to compare *AE theory to expt.
 - Study of low-n continuous MHD diffusion/loss of fast ions in H-mode
 - NPA spectrum \rightarrow significant fraction of fast ions above 40keV can be lost
 - DIII-D/NSTX CAE similarity experiment
 - Study behavior vs. q and density, measure internal density fluctuations

Wave-Particle Interaction Experiments (continued)

HHFW experiments

- -Complete power modulation experiments
 - Measure power deposition profile and electron transport properties
- -Measure loading and heating with different equilibrium **B** and shape
 - Reverse B_T , reverse I_P , reverse both together
 - Determine role of boundary geometry: LSN $\leftarrow \rightarrow$ DND $\leftarrow \rightarrow$ USN
- -Fast ion damping scaling experiments on NSTX and DIII-D
 - Study high-harmonic ion damping physics with similar v_{ion} / v_A
- -Edge Interaction measurements
 - Determine impact of parametric decay & sheath currents on power coupling
- EBW experiments
 - -Measure 20-40GHZ "O-mode" EBW emission
 - 28GHz is the proposed frequency for a MW-level EBW current drive system
 - -Measure X-mode emission with over-dense plasma
 - Use local gas-feed to overcome previous under-dense conditions

NSTX WPI group will contribute to both MD&C and Steady State Operations (SSO) ITPA research

• MDC-9 Fast-ion redistribution from *AE modes

- The large fast-ion population, extreme geometry, and high β of the ST challenge and improve our understanding of fast-ion MHD for future burning plasmas

• SSO-2.1 Complete mapping of hybrid scenario

Background: The ITPA SSO group is expending considerable effort developing the "hybrid" scenario for ITER.

- A "hybrid" scenario is defined as a partially-inductively-driven discharge with <u>stationary</u> current profile w/o sawteeth and with β < no-wall limit
 - Variety of MHD modes appear to aid maintenance of q(0) > 1 in tokamaks
- NSTX will begin its "mapping" by measuring current profile evolution and comparing to theory in long-pulse discharges
 - Data already suggests fast-ion diffusion effects could be important
 - Very useful operational scenario until EBW-CD is ready

Understanding electron thermal transport remains a critical yet element in extrapolating to future burning plasma devices

ONSTX

- Majority of heating power from α -slowing-down goes to electrons
 - Energy confinement extrapolations to ITER based largely on scaling studies
 - Ion transport better understood than electron, but much more work remains
 - NSTX is a powerful laboratory for studying electron & ion transport physics:

1.6 MW NB L-Mode

 $\chi_e >> \chi_i$ in many scenarios & dominates power loss. $\chi_i \approx \chi_i^{NC}$ also commonly observed in rapidly rotating/high- β plasmas.

NSTX will study apparent dependence of electron transport on *q*-shear

112989, 112996 0.210 sec

mode

100

RADIUS (cm)

120

140

60

T_e

Faster I

ramp

1.5

() () 1.0 ∎

0.5

20

7 MW NB H-Mode

NSTX PAC17 – FY05 Run Plan – J. Menard

160

Transport and Turbulence Overview

• FY05 research goal:

Characterize the effects of variations in the magnetic shear and gradients in $\rm T_e$ on electron transport in low-aspect ratio plasmas

- Determine role of *q*-shear and ∇T_e in barrier formation
 - Use MSE-constrained reconstructions for 1st time in transport expts.
 (Did not measure *q*-shear and barrier formation simultaneously in '04)
 - Measure response of electron transport to heating perturbations
- Several diagnostic enhancements will aid transport studies
 - Enhanced Thomson resolution will increase accuracy of ∇T_e
 - Fast "two-color" SXR to measure rapid T_e profile changes
 - Low-k correlation reflectometry to measure core density fluctuations
 - MSE for measurements of coherent magnetic fluctuations (< 100kHz)

Transport and Turbulence Experiments

- Electron transport properties
 - Access e-transport change with varying q-shear
 - Document existing transport barrier scenarios at 4.5kG
 - Vary e-heating during ramp to vary barrier (degree of q-reversal)
 - Perturbative T_{e} studies of electron transport
 - Perturb with HHFW modulation, low-Z impurity pellet, ELMs
 - Measure profile response with 2 color fast SXR arrays
- Ion transport properties
 - MAST-NSTX ion ITB similarity experiment
 - Study barrier formation as function of rotation rate and ExB shear
 - Effect of ExB shear on turbulence levels
 - Attempt to control rotation and shear to modify turbulence
- Core fluctuation measurements possibly piggyback
 - High-k scattering diagnostic commissioning/XMP
 - Low-k turbulence measurements

Transport and Turbulence Experiments (continued)

- Confinement/Transport Scaling
 - H-mode confinement scaling (with MAST) finish B_T scan
 - Determine if scaling variation with B is due to MHD or transport effects
 - ν^* , β_T dimensionless scaling studies
 - Differentiate electrostatic vs. electromagnetic turbulence induced transport
 - ρ^* scaling DIIID similarity
 - Study ρ^* , β , A dependence of transport with matched shape, n, v^* , and β_{pol}
- H-mode physics
 - L-H threshold MAST/NSTX identity (finish)
 - Impact of magnetic balance on L-H threshold: DND $\leftarrow \rightarrow$ SN with rtEFIT
 - Ohmic H-mode physics
 - Monotonic n_e profile \rightarrow simultaneous core & edge fluctuation measurements
- Reversed B_T and/or counter injection campaign at end of run
 - MAST & DIII-D \rightarrow significant transport changes with counter-injection
 - Reversed B_T impacts L-H threshold (also early-H-mode USN long-pulse)

NSTX is making important contributions to the ITPA confinement database and transport physics

Contributions to the Confinement Database and Modeling (CDM) and Transport Physics (TP) ITPA groups:

• CDB-2 ELMy H-mode scaling with β

– ST provides unique data at high- β for understanding H-mode confinement scaling

- CDB-6 Improvement of ELMy H-mode global and pedestal confinement scaling database for low-A devices
 - ST provides low-aspect-ratio data to improve and extend confinement scalings
- TP-8 MAST/NSTX ITB similarity experiments
 - ST aids understanding of transport barrier physics important for burning plasmas
- TP-9 DIII-D/NSTX ρ^{*} and aspect ratio comparison

– ST probes large ρ^{\star} limit of transport with similar poloidal dimensionless params.

Edge heat and particle fluxes must be minimized and controlled in future burning plasma devices

- H-mode operation improves global confinement and stability, but...
 - Large divertor heat load transients from ELMs are unacceptable in ITER
 - Understanding and controlling pedestal confinement/stability will be essential
 - NSTX can study this boundary physics with reactor-relevant heat-loading:

ELM type varies with shape & v_e^* . Role of squareness and high δ will be measured

Quartz microbalance and e-static particle detectors measure deposition and dust Dust particle formation/transport correlated with ELMs:

Edge Physics Overview

• FY05 research goals:

Characterize the plasma edge pedestals and scrape-off layer of low-aspect ratio, high confinement, high P/R plasmas

- Systematically vary edge plasma parameter regime and study full range of boundary transport mechanisms
 - Vary boundary shape, density, temperature, and fueling
 - Study ELMs, broadband transport, and intermittent transport "blobs"
 - Characterized H-mode pedestal height, width, and gradient
 - Characterize impact of ELMs and reconnection events on the edge pedestal, divertor, and plasma facing components
- Implement new impurity injection and fueling techniques

Edge Physics Experiments

- Pedestal and ELM physics
 - Pedestal scaling DIII-D and MAST collaboration
 - Pedestal height, width, gradients in ELMy H-mode vs. A and wall proximity
 - ELM radial extent, amplitude, frequency vs. A and wall proximity
 - ELM dynamics, classification, and structure
 - Obtain complete profile dataset to test edge stability before and after ELMs
 - Type I ELM heat pulse propagation
 - Use 2-color SXR to determine ratio of conductive/convective heat loss
 - ELM control with RWM coils DIII-D collaboration
 - Apply n > 1 field with RWM/EF coils and measure pedestal response
 - Study of small ELM regimes C-MOD and MAST collaboration
 - Compare NSTX Type-V ELM regime to high- β EDA mode on C-MOD
 - Study ELM type/size versus boundary shape
 - Vary elongation, triangularity, and squareness

Edge Physics Experiments (continued)

- Edge transport and turbulence
 - Diagnose "simple-as-possible" MHD-quiescent L-mode plasma
 - Fast 2D tangential imaging of edge turbulence ("blobs")
 - NSTX/C-MOD turbulence scale-size comparison to resistive ballooning theory
 - Role of edge flows on L-H transition using edge rotation diagnostic
- Divertor physics
 - SOL width scaling, profiles, and power balance measurements
 - Study outer divertor leg detachment physics
 - Determine operational boundaries, develop radiative divertor regime
 - Study MARFE physics and measure X-point fueling efficiency
- Fueling and edge control development and characterization
 - Lithium pellet injector (LPI): pellet deposition vs. mass, velocity, timing
 - Supersonic gas injector (SGI): quantify fueling efficiency
 - Edge biasing for density pumping and SOL control in H-mode plasmas

NSTX edge physics experiments are contributing directly to ITPA high-priority research

Contributions to the Pedestal and Edge Physics (PEP) and Divertor and SOL (DSOL) ITPA groups:

- PEP-9 NSTX-MAST-DIIID pedestal similarity
 - Exploit different aspect ratio and wall proximity to study pedestal and ELM physics
- PEP-16 CMOD-NSTX-MAST small ELM comparison
 - Understand physics leading to small ELM regimes essential for ITER
- DSOL-NEW Carbon migration/deposition
 - Develop and use new deposition & dust detection diagnostics applicable to ITER
- DSOL-15 Inter-machine comparison of blob characteristics
 - Study non-diffusive, intermittent transport dominant in SOL of fusion experiments

Development of solenoid-free startup techniques would benefit future reactors, and would be essential for a next-step ST

- Standard and low-aspect-ratio tokamak reactor design is significantly simplified if a central solenoid is not used for current drive.
 - No incentive to give up solenoid yet ITER $\tau_{\rm burn}$ > 20 min. w/ hybrid scenario
 - Difficult to achieve low aspect ratio while retaining a solenoid in an ST reactor
 - To minimize and/or eliminate the solenoid in the ST, NSTX is developing plasma formation techniques suitable for subsequent heating and current ramp-up:

PF-only startup - I_P < 20 kA

NSTX PAC17 – FY05 Run Plan – J. Menard

STX

Solenoid-free startup overview

- FY05 research goal: Increase plasma current and duration of both CHI and PF-only solenoid-free startup plasmas
- CHI experiments will increase plasma formation efficiency by taking advantage of several technical improvements:
 - Lower pre-fill from pre-ionization in lower divertor chamber (ECPi)
 - Higher injector voltage = 2kV (was 1kV)
 - Faster cap-bank turn-off to measure I_P persistence (flux closure)
 - New electrostatically shielded $I_{\rm P}$ Rogowski coils for noise reduction
- PF-only start-up experiment will benefit from other upgrades:
 - Increased HHFW power for break down: 4 \rightarrow 12 straps
 - CD₄ pre-fill, and/or use SGI for local pressure enhancement
 - PF4 and PF5 in opposite polarity for high-stored-flux scenario
 - Higher TF capability

Solenoid-free Startup Experiments

- CHI experiments
 - Transient CHI
 - Measure plasma current persistence and electron kinetic profiles
 - With suitable target, apply OH to transient CHI target
 - Drive edge/SOL current in Ohmic LSN target with transient CHI
 - Investigate evidence for edge current drive (as on HIT-II) monitor I_i , n_e , T_e
- Outer-PF only Startup
 - Large stored flux scenario using PF4
 - Produce measurable plasma current, then optimize
 - Small stored flux scenario will large null
 - Improve radial position evolution to increase I_P from 20kA to 100kA
 - Merging-compression using PF1A and PF5
 - Induce plasma at X-pts near outboard divertor plates, then merge
- Absorber field-nulling capability for high-I_P CHI
 - Commission absorber magnetic sensors

Integration of high- β , good confinement, and tolerable edge heat flux in steady state remains a fundamental challenge for magnetic fusion

- AT scenarios at standard aspect ratio are often limited by the available off-axis current drive needed to maintain desired *q*-profile
 - In ITER, beam + BS current allow steady-state operation with Q > 5
 - For ST's, EBW-CD is envisioned as the dominant off-axis J-profile control tool
 - In the near-term, NSTX will focus on raising f_{BS} (β_P) via shape & *q* profile

NSTX PAC17 – FY05 Run Plan – J. Menard

STX

Integrated Scenario Development Overview

• FY05 research goals:

Characterize strongly shaped low-aspect ratio plasmas with high fractions of bootstrap current and low toroidal induction voltage for durations that allow internal currents to redistribute.

- Study impact of enhanced shaping from new PF1A coils on pulse-length and β utilizing significant non-inductive current drive from BS and NBI
- Progressively move toward lower B_T operation for long pulse-lengths
 - Obviously important for increasing β , but β_P (f_{BS}) drops at fixed β_N
 - Electron transport increases at lower B_T, shortening J diffusion time
 - Further optimize early J-profile modification techniques = early H-mode
- Utilize enhanced diagnostic and reconstruction capabilities to characterize current profile evolution and sources of current drive
 - MSE + rotation constrained reconstructions for J-profile evolution
 - TRANSP and other analysis tools for modeling NI current sources
- Continue to study HHFW coupling and heating issues to find operational regimes where HHFW-CD can supplement other CD sources

ISD Experiments

- Long-pulse development
 - Long pulse DN development with PF1A
 - Scan plasma current and field and optimize long-pulse performance at high δ
 - Very early diverting and H-mode
 - Further reduce flux consumption and raise q with early H-mode
 - Long flat-top plasmas at lower toroidal fields
 - Combine results of above experiments, document with lower q for TSC
- ELM physics for long-pulse
 - ELM amelioration/optimization in long pulse
 - Apply results from ELM vs. shape XP + fueling variations to reduce ELM size
 - Development of Upper Null H-modes
 - Upper shoulder gas injector + USN + clean surfaces \rightarrow reduce density rise?

The experiments above contribute directly to hybrid scenario research

• ITPA SSO-2.1 Complete mapping of hybrid scenario

ISD Experiments (continued)

- Advanced fueling
 - Supersonic gas injector fueling for long pulse
 - Improve H-mode access + ELM mitigation with efficient LFS gas source
 - Shoulder gas injector fueling
 - Study impact of inboard off-midplane injector on H-mode access and ELMs
- Integration of HHFW into high- β long-pulse scenarios
 - Non-solenoidal I_P rampup with HHFW
 - Make 100kA ohmic target plasma, clamp OH, ramp to higher I_P with HHFW
 - Combination of NBI and HHFW
 - Understand conditions in which HHFW can heat in presence of NBI
 - HHFW-only high non-inductive current fraction
 - Combine HHFW-only H-mode + HHFW-CD at high β_P for high f_{NI}

Run time allocation to meet milestones, perform all ITPA experiments within ET, and complete other high-priority XPs

• Base plan is 17 run weeks = 85 run days

Task Group:	ET has FY05 Milestone	# XPs linked to ITPA	Initial Allocation	
			# days	fraction
 Macroscopic stability 	\checkmark	4	11	13%
- Wave-particle interactions	\checkmark	2	10	12%
 Transport and turbulence 	\checkmark	4	10	12%
 Edge physics 	\checkmark	4	11	13%
 Solenoid-free startup 			8	9%
– ISD	\checkmark	1	9	10%
 Cross-cutting/enabling 			12	14%
 Scientific contingency 			14	17%

• Contingency assigned based on scientific merit & programmatic needs

- Goal is to fulfill ITPA and highest-level milestones 2/3 of way into run
 - Will consider reversed B_{T} and/or I_{P} at the 2/3 point of run
- Expect most contingency time to be assigned in last 1/3 of run

• Flexibility at the end of the run will help maximize productivity

- Want to take advantage of any new results and ideas

NSTX FY05 campaign will utilize many new tools to make important contributions to fusion physics and ST science

• Exciting new capabilities:

- Enhanced shaping, RWM/EF coils, reconstructions w/ MSE
- Higher spatial resolution MPTS, new fueling techniques
- First results from high-k scattering diagnostic
- Expect to make significant progress in understanding:
 - RWM & error-field physics
 - Fast-ion MHD, transport, and effect on current profile
 - Edge stability and transport and SOL physics
 - Electron transport and magnetic shear
 - Solenoid-free current generation
- New capabilities and understanding will:
 - Advance the integration of sustained high $\beta,$ f_{BS}, and τ_{E} on NSTX
 - Contribute to world fusion science program and ITER

Cross-cutting/Enabling activities for FY05

- Diagnostic calibrations (3 days)
 - Magnetic sensors, MSE, other
- rtEFIT development (4 days)

Desired experimental capabilities:

- Isoflux control including all PF coils (add PF1A & B)
- Precise outer gap control, dR_{SEP} variation
 - HHFW coupling and EBW emission studies, MAST-NSTX L-H threshold
- Shape control of high performance/long-pulse DND and LSN discharges

Technical requirements and tasks:

- Implement divertor B-probes in rtEFIT for improved X-point control
- Integrate new PF1A coils into isoflux control algorithm
- Establish gap control of moderate κ & δ DND ohmic target with PF1A
- Establish control of DND at low-li for highest elongation & triangularity
- Develop control of LSN discharges for shape comparison studies
- Shape control combining PF1B with new PF1A for squareness control

Cross-cutting/Enabling activities for FY05 (continued)

• HHFW during I_P ramp (2 days)

Desired experimental capabilities:

- Study coupling and improve target plasma for HHFW experiments
- Modify ramp-up J profile and attempt NI ramp-up in ISD experiments
- Modify electron temperature in transport experiments, esp. reverse q

Technical issues:

- Real-time computer too slow for rtEFIT control of boundary during ramp
 - Old control algorithm required during this phase of discharge
- Lack of feedback control of outboard gap makes HHFW coupling difficult
 - Track Thomson n_e profile evolution to measure outboard gap
 - Program outer gap in "feed-forward" fashion based on previous shot evolution
- Fast ions from NBI can damage antenna with small outer gap
 - Assess new limiter plate installed to protect antenna

Cross-cutting/Enabling activities for FY05 (continued)

- Test impact of n > 1 fields from RWM coils (1 day)
 - Magnetic braking
 - Rotation control for MHD experiments
 - Flow and ExB control for transport studies
 - Boundary modifications
 - Stochastic edge for boundary profile and ELM control
- Impact of supersonic gas injector on performance (1 day)
 - Improved fueling efficiency for use in standard scenarios?
 - Possible ELM mitigation
 - Improved breakdown for PF-only startup
- Impact of impurity injection on plasma performance (1 day)
 - Lithium pellets for conditioning and recycling
 - Carbon pellets for edge transport studies