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NSTX

• Approach
“Best” model 
• for a given physics 

model / data set, reliably 
fit all data within error

• improved physics/data 
set reduces artificial 
constraint

“Rapid” reconstruction
• between-shots
• find one constraint set 

for a given (data,model) 
“Levels” of reconstruction
• based on available data 
• seamlessly switch levels 

during shot if needed data
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NSTX

MSE can be included in all levels of EFIT

• NSTX EFIT “Levels”
Level 1: external magnetics data alone
Level 2: partial kinetic profile data added
Level 3: toroidal rotation added

• Statistics on MSE fits so far:
Four channels span typical magnetic axis position; 0.3 degree error
MSE data for 58 shots available on data tree 
All 58 shots reconstructed with NSTX EFIT and written to NSTX 
database
• More than 7,500 equilibria available to the group
• More than 11,000 equilibria run in MSE testing so far
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NSTX

• Physics constraints Data points
Internal magnetic field pitch angle (MSE) 4
Plasma rotational pressure (CHERS) 51
Flux surfaces are electron temperature isotherms 20
• Te = Te(ψ(R)|z=0) directly from Thomson data - rapid analysis

required to insure self-consistent solution with toroidal rotation

Plasma kinetic pressure
• Ion pressure (CHERS) 51
• Electron pressure (Thomson) 20

External magnetics / plasma current 119
Plasma diamagnetism 1
Vacuum vessel current (includes “3-D” vessel effects) 25
Shaping coil / TF currents 9

MSE data adds further constraint to present rotating, 
high β ST equilibrium reconstructions

Total (per time point) 300



NSTX

B field pitch angle profile added to reconstruction
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NSTX

Fits with / without MSE confirm high β results

• Few % change in stored 
energy

• Fits without MSE give 
good q0 values

“calibrated” constraint 
set (using sawtooth
onset, rational surface 
position from USXR in 
selected shots)
can now use MSE for 
“calibration”

• Correlation with crossing 
q0 = 1 and β collapse
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NSTX

Fitted pitch angle evolution follows MSE data
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NSTX

MSE finds q0 ~ 1 in plasmas with sawteeth

• External magnetics-
only fit has q0 = 1.1

• Partial kinetic fit does 
not give q0 ~ 1 at low 
stored energy

MSE required to find 
reasonable q0
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NSTX

MSE fits indicate shear reversal in some equilibria

• Shear reversal 
not seen in 
reconstruction 
for this shot 
without MSE

• Shear reversal 
not apparent in 
li evolution

• Collapse in β
when q0 = 2, 
qmin = 1.5
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NSTX

CY05 MSE channels will provide additional q constraint 
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NSTX

Diagnostic input / code interaction continues to expand

• Add new MSE channels
8 channels start of FY05 run
Up to 14 channels by end of FY05 run

• Include computed fast-ion profiles directly from TRANSP
Understand possible role of MHD on fast-ion diffusion/loss
Include beam pressure anisotropy and flow of fast ions

• Use EFIT to help benchmark other reconstruction codes
LRDFIT:  time-evolved circuit model of vessel included in fit
• Reconstruction of 20kA PF-only start-up plasmas

ESC: reconstruction version built around fixed-boundary code
• Used on JET for current holes, being developed for CDX-U (LTX)



NSTX

NSTX EFIT with MSE is ready for the 2005 run

• Pre-run testing / analysis
Greater basis function flexibility, constraint optimization
Radial electric field correction to MSE data (using toroidal flow)
Further consistency checks with other diagnostics
More tests of rotating equilibria – comparison to static case
Physics analysis
• effects of reversed shear
• low-order rational surfaces and β collapse

• Between-shots EFIT reconstructions with MSE will 
improve analysis including present control room MHD 
stability calculations
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Supporting slides follow



NSTX

Expanded magnetics set reproduces 3-D eddy 
currents as axisymmetric currents during OH ramp
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NSTX

External magnetics data allow basic reconstruction

• Over 60 attempted variations to find 
model

• Profile constraints: p’(0) = 0, (ff’)’(1) = 0
constraints reproduce q0 = 1 
appearance, rational surface position 
from USXR
allows finite edge current (to model 
current transients)

• 4 profile variables (1 p’, 3 ff’; 2nd order 
polynomial in p’, 3rd order in ff’)

• Goodness of fit χ2 ~ 70 over majority of 
pulse for 108 measurements
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NSTX

“Partial kinetic” prescription reduces artificial constraint
• Over 110 attempted model variations used to find model

• 10 profile variables (5 p’, 5 ff’); allows finite edge current

• External magnetics plus 20 Thomson scattering Pe
points to constrain P profile shape

Ptot = Pe + “Pi” + “Pfast”; errors summed in quadrature (large 
total error)

• Diamagnetic flux to constrain stored energy
Greater freedom in ff’ basis function for good fit over full 
discharge evolution and for various shots

• Weak constraints on p’(0), ff’(0) yield “reasonable” q(0)
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NSTX

NSTX EFIT* alterations required for low A geometry
• Uniform discretization of 

elements at low aspect ratio

• Vessel currents required
Lower A components have lower 
resistance
Total vessel currents ~ 0.3 MA; 
plasma current ~ 1.0 MA
Vessel / plates broken into 30 
groups (poloidally)
Wall currents determined by local 
loop voltage data (9 loops)
Vessel element resistances 
matched against independent 
model of vacuum field shots

• Stabilizing plates / divertor plates 
included (~5 kA)

plate currents not well-diagnosed
*S.A. Sabbagh, et al., Nucl. Fus. 41 (2001) 1601.
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NSTX

Expanded magnetics to yield more accurate X-point and 
plate currents

• Significant upgrade to 
magnetics set

57 pickup coils vs. 23
25 local loop voltage data vs. 9 
for wall current distribution
Compensation for stray field 
from TF leads

• Stabilizing plates / divertor
plates currents now better 
resolved
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NSTX

Pure toroidal flow allows a tractable equilibrium solution
• Solve ∇φ, ∇ψ, ∇R components of equilibrium equation

MHD: ρv •∇∇∇∇v = JxB – ∇∇∇∇p ; ρ = mass density
• ∇φ:    f(ψ) = RBt

• ∇R: 2Pd(ψ,R)/R = p’(ψ,R)|ψ; Pd ≡ ρ(ψ,R)ω2(ψ)R2/2 (Bernoulli eq.)
• ∇ψ:   ∆*ψ = -µ0R2p’(ψ,R)|R - µ0

2ff’(ψ)/(4π2) (G.S. analog)

Pure toroidal rotation and T = T(ψ) yields simple solution for p
• p(ψ,R) = p0(ψ) exp (mfluid ω2(ψ)(R2 – Rt

2)/2T(ψ))

• Constraints for fit
EFIT reconstructs two new flux functions: Pw(ψ), P0(ψ) 
• Pw(ψ) ≡ ρ(ψ) Rt

2ω2(ψ)/2; P0(ψ) defined so that:
• p(ψ,R) = P0(ψ) exp (Pw(ψ)/P0(ψ) (R2 – Rt

2)/ Rt
2)

Standard input: Pw(ψ), P0(ψ)  from approximation or transport code
New approach:
• Solve for Pw(ψ), P0(ψ) in terms of measured P(ψ,R)|z=0, Pd(ψ,R)|z=0 


