

Reconstruction of NSTX Equilibria including MSE data

S. A. Sabbagh¹, M.G. Bell², R.E. Bell², L. L. Lao³, B.P. LeBlanc², F.M. Levinton⁴, J.E. Menard², C. Zhang⁵

> ¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
> ²Plasma Physics Laboratory, Princeton University, Princeton, NJ
> ³General Atomics, San Diego, CA
> ⁴Nova Photonics, Inc., Princeton, NJ
> ⁵Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

17th NSTX Program Advisory Committee Meeting

January 20 - 21, 2005 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI SNL **UC Davis** UC Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokvo JAERI loffe Inst TRINITI KBSI **KAIST** ENEA. Frascati CEA. Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of E

Motional Stark Effect data is a natural addition to NSTX EFIT reconstructions

Approach

- "Best" model
 - for a given physics model / data set, reliably fit all data within error
 - improved physics/data set reduces artificial constraint
- "Rapid" reconstruction
 - between-shots
 - find <u>one</u> constraint set for a given (data,model)
- "Levels" of reconstruction
 - based on available data
 - seamlessly switch levels during shot if needed

MSE can be included in all levels of EFIT

NSTX EFIT "Levels"	fitted parameters	artificial constraints
Level 1: external magnetics data alone	4	strong
Level 2: partial kinetic profile data added	10	3 weak
Level 3: toroidal rotation added	20	none

• Statistics on MSE fits so far:

- □ Four channels span typical magnetic axis position; 0.3 degree error
- MSE data for 58 shots available on data tree
- All 58 shots reconstructed with NSTX EFIT and written to NSTX database
 - More than 7,500 equilibria available to the group
 - More than 11,000 equilibria run in MSE testing so far

$\frac{\text{MSE data adds further constraint to present rotating,}}{\text{high } \beta \text{ ST equilibrium reconstructions}}$

•	Physics constraints	Data points	
	Internal magnetic field pitch angle (MSE)	4	
	Plasma rotational pressure (CHERS)	51	
	Flux surfaces are electron temperature isotherms	20	
	 T_e = T_e(ψ(R) _{z=0}) <u>directly</u> from Thomson data - rapid analysis required to insure self-consistent solution with toroidal rotation 		
	Plasma kinetic pressure		
	 Ion pressure (CHERS) 	51	
	 Electron pressure (Thomson) 	20	
	External magnetics / plasma current	119	
	Plasma diamagnetism	1	
	Vacuum vessel current (includes "3-D" vessel effection	cts) 25	
	Shaping coil / TF currents	9	
	Total (per tim	e point) 300	

B field pitch angle profile added to reconstruction Pitch angle (rad) vs. R Poloidal flux and pressure 30 0.2 peak pressure 2 P_{kinetic} (kPa) 01 01 0.016 0.0 MSE data -0.2 0.96 1.00 1.04 1.08 0 R(m) ψ isotherm constraint magnetic axis 0 Z(m) 6 2 5 0 4 P_{dynamic} (kPa) 3 -2 -1 -4 (mWb/rad*10) 114444 t=0.257s ([] magnetic axis -2 -6 0 1.5 2.0 0.5 1.5 2.0 0.5 1.0 0 1.0 1.5 2.0 0.0 0.5 1.0 R(m)R(m)R(m)

Fits with / without MSE confirm high β results

Partial kinetic fits

solid (red) – with MSE dashed (black) – w/o MSE

- Few % change in stored energy
- Fits without MSE give good q₀ values
 - "calibrated" constraint set (using sawtooth onset, rational surface position from USXR in selected shots)
 - can now use MSE for "calibration"
 - Correlation with crossing $q_0 = 1$ and β collapse

MSE fits indicate shear reversal in some equilibria

- Shear reversal not seen in reconstruction for this shot without MSE
- Shear reversal not apparent in I_i evolution

• Collapse in
$$\beta$$

when $q_0 = 2$,
 $q_{min} = 1.5$

CY05 MSE channels will provide additional q constraint

Present MSE measurements do not span q_{min} position in shear reversed equilibrium

Diagnostic input / code interaction continues to expand

- Add new MSE channels
 - 8 channels start of FY05 run
 - Up to 14 channels by end of FY05 run
- Include computed fast-ion profiles directly from TRANSP
 Understand possible role of MHD on fast-ion diffusion/loss
 Include beam pressure anisotropy and flow of fast ions
- Use EFIT to help benchmark other reconstruction codes
 LRDFIT: time-evolved circuit model of vessel included in fit
 - Reconstruction of 20kA PF-only start-up plasmas
 - ESC: reconstruction version built around fixed-boundary code
 - Used on JET for current holes, being developed for CDX-U (LTX)

NSTX EFIT with MSE is ready for the 2005 run

Pre-run testing / analysis

- Greater basis function flexibility, constraint optimization
- Radial electric field correction to MSE data (using toroidal flow)
- Further consistency checks with other diagnostics
- More tests of rotating equilibria comparison to static case
- Physics analysis
 - effects of reversed shear
 - low-order rational surfaces and β collapse
- Between-shots EFIT reconstructions with MSE will improve analysis including present control room MHD stability calculations

Supporting slides follow

Expanded magnetics set reproduces 3-D eddy currents as axisymmetric currents during OH ramp

External magnetics data allow basic reconstruction

- Over 60 attempted variations to find model
- Profile constraints: p'(0) = 0, (ff')'(1) = 0
 - constraints reproduce q₀ = 1 appearance, rational surface position from USXR
 - allows finite edge current (to model current transients)
- 4 profile variables (1 p', 3 ff'; 2nd order polynomial in p', 3rd order in ff')
- Goodness of fit $\chi^2 \sim 70$ over majority of pulse for 108 measurements

 $\beta_t = 2\mu_0 / B_0^2$

"Partial kinetic" prescription reduces artificial constraint

- Over 110 attempted model variations used to find model
 - 10 profile variables (5 p', 5 ff'); allows finite edge current
- External magnetics plus 20 Thomson scattering P_e points to constrain P profile shape
 - P_{tot} = P_e + "P_i" + "P_{fast}"; errors summed in quadrature (large total error)
- Diamagnetic flux to constrain stored energy
 - Greater freedom in ff' basis function for good fit over full discharge evolution and for various shots
- Weak constraints on p'(0), ff'(0) yield "reasonable" q(0)

NSTX EFIT* alterations required for low A geometry

Pure toroidal flow allows a tractable equilibrium solution

- Solve ∇φ, ∇ψ, ∇R components of equilibrium equation
 MHD: ρv •∇v = JxB ∇p; ρ = mass density
 - $\nabla \phi$: $f(\psi) = RB_t$
 - ∇R : $2P_d(\psi,R)/R = p'(\psi,R)|_{\psi}$; $P_d \equiv \rho(\psi,R)\omega^2(\psi)R^2/2$ (Bernoulli eq.)
 - $\nabla \psi$: $\Delta^* \psi = -\mu_0 R^2 p'(\psi, R)|_R \mu_0^2 ff'(\psi)/(4\pi^2)$ (G.S. analog)
 - **D** Pure toroidal rotation and T = T(ψ) yields simple solution for p
 - $p(\psi,R) = p_0(\psi) \exp(m_{fluid} \omega^2(\psi)(R^2 R_t^2)/2T(\psi))$
- Constraints for fit
 - **EFIT** reconstructs two new flux functions: $P_w(\psi)$, $P_0(\psi)$
 - $P_w(\psi) \equiv \rho(\psi) R_t^2 \omega^2(\psi)/2$; $P_0(\psi)$ defined so that:
 - $p(\psi,R) = P_0(\psi) \exp(P_w(\psi)/P_0(\psi) (R^2 R_t^2)/R_t^2)$
 - Standard input: $P_w(\psi)$, $P_0(\psi)$ from approximation or transport code
 - New approach:

• Solve for $P_w(\psi)$, $P_0(\psi)$ in terms of measured $P(\psi,R)|_{z=0}$, $P_d(\psi,R)|_{z=0}$