Supported by

Fusion Energy

Research on Transport and Turbulence in NSTX for 2006 – 08

College W&M **Colorado Sch Mines Columbia Univ** Comp-X **General Atomics** INEL Johns Hopkins Univ LANL LLNL Lodestar MIT Nova Photonics **New York Univ Old Dominion Univ ORNL** PSI **Princeton Univ SNL** Think Tank. Inc UC Davis **UC** Irvine **UCLA** UCSD Univ Colorado Univ Maryland **Univ Rochester** Univ Washington **Univ Wisconsin**

Michael Bell (PPPL) Kevin Tritz (JHU)

NSTX PAC-19 22–24 February 2006

Culham Sci Ctr Univ St. Andrews York Univ **Chubu Univ** Fukui Univ Hiroshima Univ Hyogo Univ Kyoto Univ Kyushu Univ Kvushu Tokai Univ NIFS Niigata Univ Univ Tokyo **JAERI** Hebrew Univ loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP. Jülich IPP**, Garching ASCR, Czech Rep Univ Quebec

Office of

Science

NSTX Operates in Regimes that can Resolve Fundamental Issues in Plasma Transport

- Dominant electron heating by supra-Alfvénic ions
 - Analogous to $\alpha\text{-heating}$
- Electrostatic \rightarrow electromagnetic turbulence as β increases
- Low aspect-ratio and plasma parameters facilitate measurements of both ion- and electron- scale turbulence
- Apparent suppression of anomalous ion transport
 - Turbulence suppression by high flow shear predicted by theory: ab initio and in recent calculations
- Electron transport dominant in most regimes
 - Discovered methods to control and reduce electron transport
- Milestone R(06-1): *Measure short wavelength turbulence in the plasma core in a range of plasma conditions. (Sep. 2006)*

NSTX Research on Transport and Turbulence Contributes to High-Priority Issues for ITPA

- Resolve β scaling in dimensionless formulation of scaling
 - Reduce uncertainties in ITER performance predictions
- NSTX data can help overcome limitation of (ρ*, v*) colinearity in conventional R/a dataset
 - see talk by S. Kaye

- Low A can act as "tie-breaker" between competing theories and formulations for turbulence-driven transport
 - Trapped particles, mode coupling, magnetic shear
- Similarity experiments with DIII-D, identity experiments with MAST

Developing a Comprehensive Suite of Diagnostics to Research Transport and Turbulence

Reflectometers Show Decrease in Radial Correlation Length of Signal Fluctuations at H-mode Transition

 Correlation reflectometers (20 – 40 GHz) work across H-mode transition in ohmically heated plasmas with initially peaked density profiles

- Signal fluctuation spectra and amplitudes show little change
- Is reduction in radial correlation length evidence for flow-shear suppression?
- Measure *poloidal* correlation lengths with quadrature reflectometers this year

PAC-19 / 060223 / MGB

S. Kubota, W.A. Peebles, N. Crocker (UCLA), C. Bush (ORNL) 5

Tangential Microwave Scattering Can Probe Fluctuations of Interest for Electron Transport

- $\lambda = 1.07$ mm probe beam launched tangentially near midplane
- Inboard ($\rho < 0.1$) / outboard ($\rho \approx 0.7$) launch sightlines
- Five receiver sightlines scan ${\bf k}_{\scriptscriptstyle \perp}$
 - $-k_{\perp} = 4 +22 \text{ cm}^{-1}$ (in), $4 -22 \text{ cm}^{-1}$ (out)
 - Beam waist radius ~ 3 cm, δk_{\perp} ~ 0.7 cm⁻¹
- Detectable $\delta n_e/n_e \sim 3 \times 10^{-5}$

V.STX

- Made possible by exceptional port access
- Measurement localized by toroidicity: good spatial resol'n
- Well matched to investigating ITBs in NSTX

PAC-19 / 060223 / MGB

D. Smith, H. Park, E. Mazzucato (PPPL), C. Domier (UCD) 6

NSTX Provides an Ideal Laboratory to Study Fluctuations Underlying Electron Transport

- New results from non-linear GYRO calculations of ITG/TEM applied to NSTX
 - Non-adiabatic electrons destabilizing
 - TEM effects magnified
 - E×B flows strongly stabilizing
 - Results sensitive to size of radial domain
 - Possibility of "turbulence draining"

Deeply Reversed-Shear Appears to Produce an Electron Internal Transport Barrier

Perturbative Measurements with eITB Suggests Suppression of Turbulence Affecting Electrons

- Inject low-velocity lithium pellet to perturb T_e at edge
 - Density perturbation inside ρ = 0.8 is small
 - Follow T_e evolution with two-color SXR technique
 Lithium pellet (0.5mg) into L-mode eITB plasma with 2 MW NBI

• Slow propagation, increase in $R/L_{Te} \Rightarrow$ marginal stability unlikely

PAC-19 / 060223 / MGB

D. Stutman, K. Tritz (JHU) 9

Perturbative e-Transport Large in NBI H-modes

- T_e profile evolves with little change in $\nabla T_e/T_e$
 - Suggests critical gradient applies: marginal stability
 - c.f. earlier work on heat-pulse propagation
- Two time scales apparent
 - Perturbative χ_e *higher* in H-mode edge barrier

Research Interests for 2006 Experiments in Transport & Turbulence

- Measurements of high-k fluctuations to meet milestone R(06-1)
 - Final alignment of high-k μ-wave scattering in first week (OH L-mode)
 - Observe during initial experiments on eITBs & perturbative transport
 - Develop dedicated experiment to measure in optimum conditions
- Study of low-density, RS discharges with & without eITBs
 - Continue '05 work with upgraded 12-channel MSE
 - Exploit possible benefits of lithium coating to control $n_e(R)$
- Perturbative studies of electron transport
 - Continue '05 work with upgraded 3-color "optical" SXR array (JHU)
 - Examine roles of collisionality, critical gradient and current
 - TESPEL (doped pellets) injection (NIFS collaboration)
- Momentum transport study with NBI heating
 - ITPA task TP-6.3

Research Interests for 2006 Experiments in Transport & Turbulence (2)

- Effects on transport of reducing recycling by lithium coating
 - Dramatic benefit in TFTR & favorable indications from CDX-U
- Transport in discharges with counter-NBI
 - MAST observed very different profiles and transport: eITB
- High-performance double-barrier regime eITB + H-mode
 - Possibility for global suppression of turbulent transport
 - ITPA task TP-8.1: ITB Similarity Experiments with MAST, DIII-D
- Scaling of confinement, particularly β & A, B dependence
 - Contributions to both ITPA (S. Kaye talk) and CTF path
- Investigation of ion transport and heating
 - Neoclassical theory as $B_T \rightarrow B_P$ (GTC-Neo), FLR effects
 - Non-classical heating mechanisms, *e.g.* stochastic ion heating

Research Interests for FY 2007 – 8

- Continue work initiated in FY'06 and curtailed by limited run time
- Milestone for FY'07: *Study variation of local high-k turbulence* with plasma conditions
 - Develop from preliminary studies with tangential scattering in FY'06
 - Scans dominant scaling variables (I_p, B_T, P_{aux}, n_e) in all accessible modes of operation and heating to compare with theory
- Milestone for FY'08: *Measure poloidal rotation at low A to constrain theory*
 - Install interim poloidal CHERS this year for FY'07
 - Full system commissioned for FY'08 experiments
 - Compare with neoclassical poloidal flow
 - Full shearing rate data for simulating turbulence
- Role of poloidal flow in internal transport bifurcations *c.f.* v_{θ} shear layer measured at TFTR ERS transition

NSTX Will Continue to Play a Vital Role in Transport & Turbulence Research

- Low aspect ratio creates unique plasma regimes
 - Reveals underlying physics
 - Stresses theory and pushes its development
 - High β : electrostatic \rightarrow electromagnetic phenomena
 - Breaks colinearity in scaling data at standard A
- Overlaps with and extends standard tokamak operational regimes
 - L-mode, H-mode, ITBs, modified shear
- State-of-the-art diagnostics available and under development
 - Excellent access
 - Low B makes electron-scale turbulence measurable
- Planned experimental program contributes both to ITPA and to CTF development