Supported by

Fusion

Steady State Operation and Current Ramp-up Research on NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Presented by D. A. Gates At the 19th NSTX PAC meeting PPPL - Princeton, NJ February 22-24, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX steady state operation and ramp-up research aims to provide physics basis for CTF

- CTF target definition
- Steady state
 - Progress on steady state operation
 - Run plan 2006
 - Strategic plan 2007-2008
- Ramp-up
 - Ramp-up paradigm
 - Run plan 2006
 - Strategic plan 2007-2008

CTF target defines research issues for both steady state and ramp-up

- Many CTF parameters already achieved on NSTX
- Primary difference are
 - higher elongation $\kappa \approx 3.2$ in CTF
 - fraction of beam driven current due to higher density in NSTX

Parameters	$\frac{\text{CTF}}{(\tau >> \tau_{\text{skin}})}$	NSTX so far (κ ≤ 2.7, τ ≤ 6τ _{skin})
I _p (MA)	10	≤1.5
B _t (T)	2.5	≤0.6
I _{BS} /I _p , I _{CD} /I _p	0.43, 0.57	0.5, 0.15
μ ₀ ℓ _i RI _p (Wb)	≥3.8	~0.13 (goal)
n _e /n _{GW}	0.16	0.7
β _N (%·m·T/MA)	3.5	5.5

STX

Plasma with CTF q_{95} sustained for $6\tau_R$

- Improved plasma shape control has enabled progress
- Discharge lasting ~1.6s
 - Flattop for ~ $50\tau_E$ and ~ $6\tau_R$
 - Limited by TF coil temperature
- Non-inductive fraction reaches 65% with 85% of non-inductive current pressure driven
 - Finite collisionality on NSTX reduces bootstrap by 20-30%
- Onset of 1/1 mode reduces confinement as $q(0) \rightarrow 1$
- *q(0)* > 1 sustained
 - hybrid like mode ITER relevant
- Issue: density ramps continuously

Progress towards steady state has been substantial

- Shaping is associated with both increased time averaged β_t (= <β_t>) and increased pulse length
- Pulse length has been extended to $\sim 50^* \tau_E$ while maintaining high confinement and β_N
- β_N*H₈₉ saturates with pulse extension, similar to tokamak performance

Sustained β scales with increasing shape factor

 TRANSP calculations verify *f*_{bs} scales according to approximate relationship

$$f_{bs} \sim \sqrt{\varepsilon} \beta_p$$

• Define shape factor *S*

 $S = q_{95} \left(I_p / a B_T \right)$

and "sustained β "

$$\beta_{sus} = f_{bs}\beta_t \sim \sqrt{\varepsilon}\beta_p\beta_t \sim C\varepsilon^{-1/2}S\beta_N^2$$

- Expression shows expected scaling with shape factor
- Gives confidence in scaling to larger devices at higher S

Pulse averaged approximate scaling β_{sus} vs. *S* (*S* averaged over the same time window as $\beta_{p}\beta_{t}$)

ISTX

Predicted current profile in good agreement with MSE measurement for quiescent discharges

- Compute V_{LOOP} distribution/evolution directly from MSE-constrained fits
 - Long pulse-length and quiescent discharges needed for analysis
- Fit *T*, *p*, *Z*_{eff} to ψ , compute σ_{NC} , J_{OH} & J_{BS} (Sauter model), add TRANSP J_{NBI} Sauter collisional NC model consistent with experimental I_P and J_{II}

Comparing Sauter to NCLASS models to assess role of aspect ratio, impurities, etc... PAC-19 / Gates

ISTX

Error field reduction holds promise for pulse extension

- Error field scales with $I_{oh}*I_{tf}$ (with a time delay inertia?)
- Achievable β_N decreases with increasing $I_{oh}*I_{tf}$
- Measured core rotation correlates with inferred error field amplitude
- · Indicates that error field determines rotation speed
- Error field may be important in determining the maximum I_p ramp rate
 - Faster ramp could prevent onset of internal modes
- Investigate error field mitigation proportional to $I_{oh}*I_{tf}$

8

Run plan 2006 - Steady State development

- Investigate long-pulse operation with density control using lithium
- Propagate early H-mode and rtEFIT boundary control to all long-pulse scenarios
- Investigate effect of error field correction on longpulse plasma behavior
- Investigate HHFW sustainment with improved voltage feedback to avoid trips

Research goals 2007-2008 - Steady State development

- Research milestone (2008): Perform long pulse plasmas in conditions relevant to CTF
- Investigate NB current drive physics in low density plasmas with high non-inductive fraction dominated by neutral beam driven current
 - Motivated by CTF design and by
 - Important issue for ITER
 - ASDEX-U observation of limitation of NB current at high powers
- Demonstrate higher $\kappa \sim 2.8$ operation
- Participate in MAST EBW experiments
- Modeling studies
 - Investigate possibilities for off axis current drive using neutral beams
 - Investigate EBW current drive

Possibilities for Current Ramp-up in CTF

- Assume initial plasma formation from CHI or ECH assisted PF startup
- Add in neutral beams giving three terms
 - NBI current
 - Bootstrap (+other pressure driven currents)
 - Vertical field ramp flux
 - Time history of the vertical field must match that required for equilibrium
- Use transformer for plasma startup and/or to provide current control during ramp independent of vertical field

Iron core concept changes CTF ramp-up paradigm

- If design is successful, 100% current ramp no longer required for CTF
- Iron core surrounded by copper wedges with Inconel separators which reduce eddy currents
- Eddy currents calculated to be acceptable
- Uses ~35% of center stack area to provide 1MA of plasma current
 - Does not eliminate need for startup scheme (CHI or PF assist) or noninductive current drive (CHI, NB, bootstrap, EBW, etc.) during ramp-up

STX

Early H-mode has reduced flux consumption

- *I_p* "flat-spot" induces early H-mode
- Lowers internal inductance
 - delays MHD onset (presumably due to increased q_{min})
 - Raises elongation/ bootstrap current (for fixed field curvature)
- Clear example of flux
 usage minimization

Shot 112546 - early H-mode Shot 111964 - No early H-mode

H-mode transition

ISTX

Run plan 2006 - Ramp-up optimization

- Further optimize flux consumption during startup
 - Early H-mode
 - Early shaping
 - Early heating
 - Flux optimization of null
- Explore HHFW for ramp-up with improved voltage feedback
- Develop low density operating scenario using lithium
 - Investigate locking behavior at low density

Research goals 2007-2008 - Ramp-up optimization

- Continue flux reduction studies
- Investigate flux-optimized initial null configurations
- Investigate flux consumption and current drive during current ramp
 - Low voltage NB injection during ramp-up
 - MSE to measure current profile
- Address possible mode-locking behavior at low density
 - Operational limits will be identified in 2006

Improvements in shape control and operational scenarios have enabled longer pulses

- At q_{95} required for CTF, NSTX has simultaneously achieved
 - Non-inductive current fraction $\sim 65\%$
 - Pressure driven current fraction ~ 50%
 - 1.6s pulse length with flattop lasting ~ $6\tau_{R'}$ ~ $50\tau_E$
- New iron core transformer concept for CTF adds impetus to research on NSTX to enhance flux utilization through
 - Error field reduction
 - Flux optimized null formation
 - Density control with lithium
 - Further shape optimization
 - Earlier H-mode in more scenarios
 - HHFW current-ramp assistance