

Global Energy Confinement Scaling in NSTX and ITER Contributions

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. UC Davis UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. M. Kaye PAC-19 Feb. 22-24, 2006 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

NSTX Addresses Global Confinement Issues Critical to ST Physics and Design of Future Devices

- NSTX operates in a unique dimensionless parameter space
 - R/a, β_{T} , & ($\rho_*,\nu_*)$ at high power (>3 MW)
 - Develop understanding of confinement trends specific to ST regime
 - Identify differences from conventional aspect ratio
- NSTX data crucial for establishing physics insight necessary for future devices (ITER, CTF and beyond)
 - Complements work done at conventional aspect ratio
 - Allows further development of confinement scalings
 - Notably in β , R/a (ITPA priority)
 - Greater confidence in parametric dependences
 - Better extrapolations

NSTX extends parameter space

- Allows for exploration of confinement trends at high-β, low-v*
- Connect to conventional aspect ratio database for assessment of R/a

NSTX Accesses Good Confinement Regimes

> 2.5 L-mode for ~ 4 $\tau_{\rm F}$

	W _{MHD}	τ_{E}^{global}	H _{97L}	H _{98(y,2)}
L-mode	up to	up to	up to	up to
(transient)	280 kJ	110 ms	2.5	1.1
H-mode	up to	up to	up to	up to
	390 kJ	85 ms	2.7	1.4

Good agreement between kinetics and magnetics

Measured Neutrons (10¹⁴ sec⁻¹)

Results of <u>Systematic</u> Parameter Scans Indicate Some Scalings Similar to Those at Conventional R/a

 $\tau_{\text{E,thermal}}$ calculated in TRANSP

1.0

5

1.3

10

H-mode

Ip=0.8 MA B_T=0.45 T

60

H-mode

Ploss=4.4 MW B_T=0.45 T

- H-Mode data from 2004 experiments (ELM-free and ELMy) $I_p = 0.6 - 1.2MA$, $B_T = 0.3 - 0.45 T$, $n_e = 1.5 - 7e19 m^{-3}$, $P_{NBI} = 1.5 - 7 MW$, $\kappa = 1.6 - 2.4$
- Linear current scaling
 - Need to control density to determine current scaling unambiguously
- Slightly weaker power degradation than ITER-PB(y,2)

Data Exhibits a B_T Dependence and Shot – Shot Variability

Degree of shot – shot variability consistent with that observed on other devices

H-factor depends on ELM type, decreases with higher elongation

A Variety of Statistical Methods Have Been Used to Study Confinement Trends in NSTX

- Ordinary Least Squares Regression (OLSR)
 - Assume principal measurement error is in response variable ($\tau_{E,th}$)
- Principal Component Error-In-Variable (PCEIV)
 - Establish linear relation among predictor and response variables from PC with minimum eigenvalue ($\Sigma \alpha_i \log x_i \sim 0$)
 - Not zero in practice, but eigenvalue small
 - All variables normalized by their relative errors (assumed to be uncorrelated)
 - W_{th} (14% error) included in set of variables
- PCEIV-C
 - PCEIV with correlated errors taken into account
 - i.e., ϵ (=a/R), B_T (=B₀R₀/R_{geo}, "0" indicates value at centerstack)
- Bayesian
 - Use probability models to quantify data uncertainties and fits to the data
 - Gives similar result to OLSR (will not discuss further here)

<u>Statistical</u> Analyses Indicate a Stronger B_T but Weaker I_p Dependence Than Exhibited at Conventional Aspect Ratio

- Variation in power scaling exponents among methods leads to range of β -scaling dependences (from null to unfavorable)
- B_{τ} and β scaling to be studied in future experiments through dedicated scans

PAC-19-SK

NSTX Data In the International H-mode Database Used to Determine β , ε Scalings

- ~100 NSTX Discharges From 2004 Contributed
- IPB98(y,2) Scaling Overestimates Confinement at Low R/a (H<1)

 $\tau_{\text{E,th}}^{\text{IPB98(y,2)}} \sim I_{\text{p}}^{0.93} \text{ B}_{\text{T}}^{0.15} \text{ n}_{\text{e}}^{0.41} \text{ P}_{\text{L,th}}^{-0.69} \kappa^{0.78} \text{ M}^{0.19} \text{ R}^{1.97} \epsilon^{0.58}$

 $B\tau \sim \rho_*^{-2.7} \beta^{-0.9} \nu_*^{-0.01}$

ε

Recent Scalings Also Fail to Describe Low R/a Data Adequately

PAC-19-SK

Further work needed to reduce effect of $\beta - \varepsilon$ correlation in database (similarity experiments)

NSTX Confinement Studies Have Established Confinement Trends in STs and Have Been Important to ITPA/ITER Studies

- Systematic scans indicate current, power scaling similar to those at higher aspect ratio
 - Density increases with plasma current
 - Weaker current scaling using statistical methods
 - Scalings show $B\tau \sim \beta^0$ to $\beta^{-0.65}$
- Data shows scaling with B_T and shot shot variability
 - Some variability can be attributed to the effects of shaping, ELM amplitude, density fluctuation amplitude (weak)
- Including NSTX data in the ITPA database has aided in establishing the β and ϵ dependences with a higher degree of confidence
 - Weaker β degradation and stronger ϵ dependence than in scalings developed only from conventional R/a devices
 - Range of possible β-dependence reduced

Results of Analyses Have Identified Areas That Require Further Work (Both Experiments and Analysis)

- Experiments (related to ITPA priority tasks)
 - 1) Assess B_T dependence through dedicated scans (FY06)
 - At constant I_p and constant q (not simultaneously)
 - 2) Decouple density from plasma current (FY06)
 - Lithium conditioning
 - 3) Perform dedicated β , v^* and shape (κ , δ) scans (FY06) Similarity experiments with MAST planned in FY06 for # 1-3
 - 4) Joint studies with DIII-D to determine R/a-scaling more precisely (FY06-07)
 - Overlap β range across aspect ratio
- Analysis
 - Further analysis of data required to identify sources of scatter
 - Profile shape, T_i/T_e , vessel conditioning, wall-plasma gaps,
 - Contribute recent H-mode data to ITPA confinement database (~170 discharges from FY05 presently being analyzed)
 - April timeframe