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NSTX investigates low collisionality axisymmetric
toroidal plasmas at low aspect ratio and high-β

Achieved Parameters
Aspect ratio A≡R0/a = 1.27
β ≡ p / (B2/2µ0) ≈ 1, 〈β〉 = 0.2-0.4
Elongation κ = b/a 2.7
Triangularity δ 0.8
Major radius R0 0.85m
Plasma Current Ip 1.5MA
Toroidal Field BT0 0.6T
Poloidal flux 1Wb
Pulse Length 1.5s
Te, Ti 1-4keV
ν∗e, i 0.1, 1

Auxiliary heating & current drive:
RF (30MHz) 6 MW
CHI 0.4MA
NBI (100kV) 7 MW

R0 a

b



NSTX contributes to fundamental toroidal
confinement science in support of ITER and future ST’s
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• NSTX accesses the plasma β of tokamaks, and extends far beyond this…
– Improved understanding of roles of toroidicity and β on macro and micro-stability   

• Only major US facility studying Li for particle pumping and power handling
– Power dissipation in divertor very challenging for ITER and devices beyond

• Only ST in world with advanced mode stabilization tools and diagnostics
– With DIII-D, can validate RWM control methods for ITER

• Unique opportunity for understanding electron gyro-scale turbulence
– Understanding crucial for all α-particle-heated burning plasmas

• Uniquely able to mimic ITER fast-ion instability drive with full diagnostics
– Measurement of current profile at high vfast / vAlfven and βfast

• Wave physics in over-dense plasmas (ωpe > Ωce) 
– Developing EBW and HHFW heating and CD tools for ST and high-β AT

• Compact geometry + high β for attractive fusion applications:
– Component Test Facility (CTF) for nuclear testing of reactor components
– Successful CTF could lead to attractive fusion reactor
– Both applications require non-inductive current formation techniques (CHI)



NSTX Research Highlights from 2005 Run

• Long-pulse operation - enhanced plasma shaping & control

• Boundary physics

• Macroscopic stability

• Electron thermal transport

• Fast-ion-instabilities and confinement

• Wave heating and current drive

• Plasma formation with Coaxial Helicity Injection
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The ST configuration provides access to high β plasmas

• Ideal MHD energy principle Max(βT) ~ βN × IP / aBT
• Low A higher IP / aBT stable to dangerous long λ modes
• Low A higher βN limit w.r.t. short & long λ instabilities

⇒ Paramagnetic plasma: local β 50%, diamagnetic: local β 100% 
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• Steady-state ⇒ need most of current to 
be self-generated by “bootstrap” effect

– Fraction of “bootstrap” current fBS = IBS / IP

• Efficient reactor ⇒ maximize fBS & βT

• Motivates elongating plasma (high-κ)

• Motivates high normalized β (high βN)
– High βN at high κ requires high triangularity δ
– Plasma “spin” and/or active feedback control 

required to stabilize “Resistive Wall Mode”
(RWM) above ideal no-wall stability limit

Conventional
Aspect Ratio

ST plasmas operate at significantly 
higher βN and IP / aBT than is possible 

(i.e. stable) at conventional aspect ratio



7

New divertor poloidal field coils provide enhanced ELM 
stability and plasma shaping capabilities
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Previous coil New coil High stable βN at high κ requires plasma 
to be “D” shaped (high triangularity δ)
⇒ new NSTX coils provide this shape
⇒ NSTX record pulse lengths at fBS=50%    

and normalized performance of CTF
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Record discharge pulse-lengths have been achieved 
by operating with sustained H-mode and high βN

• H-mode with small ELMS ⇒ reduced flux consumption, slow density rise
• βN > 4 for ∆t > 1s at high βP > 1 increases bootstrap fraction, lowers VLOOP

βN

IP (MA) 

VSURFACE (V)

βT = 17%
βP = 1.5, li = 0.6

τCR

Time (s)

ne / nGW

τE

H89P = 2.5
H98(y,2) = 1.3

116318κ = 2.4, δL = 0.77, δRSEP = -1cm Note slow density rise – motivates Li

Highest βN phase:
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Onset of saturated n=1 mode degrades confinement, but 
results in a long-pulse “hybrid” state with qMIN sustained near 1

• Saturated n=1 mode 
persists for 0.5s late in 
discharge evolution

• Central rotation drops by 
factor of 3 at mode onset
– Edge fφ maintained
– Ti / Te 1 (not shown)

• βN = 6 decreases to 4
– βN = 6 above no-wall limit  
– βN = 4 near no-wall limit

• No RWM observed…

• qMIN sustained near 1
– No sawteeth observed
– Discharge runs out of OH 

flux and TF flat-top
– Possible “hybrid” mode, 

physics relevant to ITER
Time (s)

Core fφ (kHz)

Edge fφ

βN

qMIN

qMIN without Er correction

(Nova Photonics)

PNBI = 6MW

Note 
suppressed
zero
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Longest duration discharges approach 70% 
non-inductive current fraction prior to onset of n=1 mode

• 85% of non-inductive current is ∇p-driven = BS + Diamagnetic + PS

• Investigating role of MHD in diffusion/loss of fast-ions and CD in elevating q(0)
– TRANSP agrees with measured neutron rate to within ± 10% during high-β phase
– TRANSP over-predicts neutron rate during late n=1 activity (assumes no anomalous diffusion)

Hybrid scenario is high priority research area in ITPA SSO group 
See presentation by D. Gates for more on long-pulse operation 

Neutron rate comparison

1014 s-1

Diam+PS

fNI = 70%

n=1 mode
onset



NSTX Research Highlights from 2005 Run

• Long-pulse operation - enhanced plasma shaping & control

• Boundary physics

• Macroscopic stability

• Electron thermal transport

• Fast-ion-instabilities and confinement

• Wave heating and current drive

• Plasma formation with Coaxial Helicity Injection
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Precise control of X-point balance important to performance
Made possible by using rt-EFIT for shape control – collaboration with GA

• Very small changes in the plasma boundary reproducibly lead to large 
differences in edge stability – “edge-localized-mode” (ELM) instabilities

• ELMs have a major impact on performance - controlling them is crucial
USN

LSN1.0 0.0

117424 117425LSN USN

Large heat pulses from ELMs can erode divertor material – important for ITER and CTF

12J. Menard – NSTX PAC-19

Small ELM scenarios high priority in ITPA PEP group  
See presentation by R. Maingi for more on pedestal physics 
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Gas-puff imaging (GPI) diagnostic provides high-time-resolution 
diagnosis of near-edge transport phenomena and ELMs

• Example: turbulence and L-H transition
– Testing hypothesis that Reynold’s stress induced 

zonal/shear flow suppresses turbulence ⇒
• Expect increase in pre-transition low/high-f bicoherence

– Most shots exhibit no increase in bicoherence before 
L-H transition – different from DIII-D result

Viewing area just above 
midplane on outer edge



Particle pumping was achieved using Li deposition on lower 
divertor - exhibited factor ~2 decrease in density

…but required injecting Li pellets for many discharges

Lower single-null
divertor discharges,

0.45T,
D2 gas fueled 3.5mg

0.00.50.00.1Time (s)<ne>(10m)Before Li (after He)Gas off1st after Li (30mg)2nd after Li

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

<ne> 
(1019m-3)

Before Li 
(after He)

2nd after Li

1st after Li (25mg)

Gas off, 
plasma 
diverted

0.0

0.5

1.0

PNB (10MW)

Ip (MA)

117087 
117111 
117112

• 25mg of Li pumping of edge density saturated after 3 discharges
• Li evaporator in 2006 ⇒ deposit more Li, improved control

J. Menard – NSTX PAC-19 14See presentation by H. Kugel for more on Li and recycling control 



NSTX Research Highlights from 2005 Run

• Long-pulse operation - enhanced plasma shaping & control

• Boundary physics

• Macroscopic stability

• Electron thermal transport

• Fast-ion-instabilities and confinement

• Wave heating and current drive

• Plasma formation with Coaxial Helicity Injection
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Non-axisymmetric coils for advanced  
MHD mode stability and control experiments

Upper/lower 
RWM

Sensor 
Arrays

•Six coils spanning midplane
Toroidal mode # n = 1 - 3 
DC or AC standing waves
Toroidally propagating fields

•Recent experiments addressed:
Error field physics/correction/control
• Static and ramped n=1 fields
• Island formation
• Rotation damping

Physics of marginally stable RWM
• MHD Spectroscopy

Toroidally propagating n = 1 field
• Resonant field amplification

Rotation control 
• Static “non-resonant” n=3 fields 

• 2006 experiments will emphasize 
feedback control of EF and RWM

16J. Menard – NSTX PAC-19

Non-axisymmetric ex-vessel coils

Plasma/conductor/coil geometry 
similar to US proposal for ITER
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Pulse-lengths have been extended at high βN by reducing 
intrinsic n=1 error-fields (EF) using the non-axisymmetric coils

• Applying field in “non-
correcting” direction 
damps rotation, leading to 
earlier locked mode (LM) 
and/or RWM formation

• Applying field in 
“correcting” direction, 
allows sustained central 
rotation. Near-edge 
rotation locking is avoided 
- extending pulse length 
at high-β

2006 experiments “Dynamic” EF correction
• Measure plasma response to EF in real-time
• Slowly feedback control EF to small value

EF & LM physics high-priority research area in ITPA MHD group
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MHD spectroscopy - measured n=1 resonant field 
amplification (RFA) of RWM stabilized by plasma rotation

• Applied field phased to 
create traveling wave in 
toroidal direction

• Peak in RFA(ω) shifted in 
direction of plasma flow

Expected by RWM 
theory / experiment

• Confirms resonance with 
weakly damped, slowly 
propagating mode = RWM

RFA =
Bapplied

Bplasma
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RWM physics high-priority research area in ITPA MHD group



Rotation control: n=3 non-resonant externally applied fields 
decrease the plasma rotation initially near edge, later in core

19
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Rotation decreases during n=3,
Increases when n=3 removed

• Coils have allowed detailed tests of 3D 
neoclassical toroidal viscosity (NTV) models

• Damping stronger & more controllable on NSTX

• Study impact of flow on thermal transport

• Very useful for MHD stability studies:

2006-7 experiments 
Simulate ITER RWMs

1. Slow plasma rotation to destabilize RWM
2. Feedback stabilize RWM

Complements DIII-D RWM control research
RWM control system design for ITER 

high-priority research area in ITPA MHD group



NSTX is making unique low-A contributions to disruption 
physics understanding needed for ITER and CTF
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Inductance also proportional to Inductance also proportional to aspect ratioaspect ratio
– NSTX has 2-3 × lower τ/S

• consistent with expected scaling
– Supports basic model of Te= 5-10eV 

with impurity line radiation balancing 
POHMIC during current quench phase

TokamakTokamak data: data: τ/S ≥ 1.6ms/m2

See presentation by A. Sontag for more on MHD 

L/R decay time L/R decay time τ τ proportional proportional toto
plasma crossplasma cross--sectional area Ssectional area S

NSTX data: NSTX data: τ/S ≥ 0.6-1ms/m2

M. Sugihara, IAEA 2004

Contributing to new ITPA disruption database to determine 
current-quench-time scaling for ITER blanket module stress calculations



NSTX Research Highlights from 2005 Run

• Long-pulse operation - enhanced plasma shaping & control

• Boundary physics

• Macroscopic stability

• Electron thermal transport

• Fast-ion-instabilities and confinement

• Wave heating and current drive

• Plasma formation with Coaxial Helicity Injection
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In low-density L-mode, improved electron energy confinement 
correlates with degree of magnetic shear reversal
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• τE = 60-80ms – better than standard “H-mode”
– up to 100ms with late H-mode transition

• Inboard limited 1MA, 4.5kG L-mode discharges
– nearly DN diverted few mm inner gap control

q(R)
using MSE

Control of transport may be possible via control of 
J profile RF wave current drive (HHFW & EBW)



Measurements of electron thermal diffusivity vs. magnetic shear 
will test models of anomalous electron thermal transport

23J. Menard – NSTX PAC-19

Y. Idomura, S. Tokuda and Y. Kishimoto
Nucl. Fusion 45 (2005) 1571–1581 

NSTX
ρ*te

• EXAMPLE:
Electron Temperature Gradient
(ETG) micro-instability-driven 
turbulence is predicted to be 
sensitive to magnetic-shear

Blue curves, with stronger shear 
reversal, have lower electron 
and ion thermal diffusivities

Approx. Rq-minReversed-q L-modes



Lithium pellet injection into the edge probes electron 
thermal transport by inducing edge Te perturbation

• “Two-color” SXR measures Te profile evolution with high time resolution

R/LTe from 
t=440 to t=444 ms

R (cm)

24J. Menard – NSTX PAC-19

R/LTe from 
t=297 to t=301 ms

time

• 6MW monotonic-q H-mode
– Core Te profile exhibits 

clear critical gradient 
behavior – ETG?

• 2MW reversed-q L-mode
– Core SXR Te actually 

increases ⇒ very different 
transport properties

See presentation by M. Bell for 
more on transport and turbulence

R (cm)
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ITER will operate with a large, 
super-Alfvénic, fast ion population

• ITER in new, small ρ* regime for fast ion transport
– k⊥ρ ≈ 1, "short" wavelength Alfvén modes
– fast ion transport from interaction of many modes

• NSTX also routinely operates with super-Alfvénic fast ions; 
– Although ρ* is large, can study multi-mode transport
– Only machine capable of measuring q profile at large vfast / vAlfven

26J. Menard – NSTX PAC-19
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Multi-mode bursts can induce significant fast-ion losses, 
while weaker losses occur with single-mode bursts

• Opportunity to examine multi-mode fast ion transport

27J. Menard – NSTX PAC-19
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Reflectometer and Mirnov data indicates 
“sea of TAE” with n=1-7 vs. a few scattered modes…

• Neutron rate decrease correlates with number of modes, not just amplitude
(Mode spectra below are from TAE burst events of previous viewgraph)

Reflectometer 
(radians)

0 100 200
Frequency (kHz)

Mirnov Coil #7  
(mG)

113544_0.2688s

n = 1 3 4 4 5 5 5 6 6 7

116875_0.2792s

n = 4 4 6

0 100 200
Frequency (kHz)

Mirnov Coil #1  
(mG)

Reflectometer 
(radians)3

2

1

0

4

20
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0

30

5% neutron rate decrease: 1% neutron rate decrease:

28J. Menard – NSTX PAC-19

• High n's imply large k⊥ρfastest = 2 - 5, but for ions with Vbeam ≈ VAlfvén, 
k⊥ρbeam = 0.5 - 1.5 (ρ* ≈ 0.06)



M3D nonlinear hybrid simulation of beam-driven modes in NSTX 
shows a bursting n=2 TAE as the mode moves out radially:

Non-linear simulations of single-n TAEs are promising –
now in early stages of simulating multiple simultaneous modes

2

0

-2

108530t = 0.267

200 µs

time
0 100 200 300 400 500 600 700

0

1

-1

G.Y. Fu et al., IAEA FEC 2004

Time
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Fast-ion redistribution from TAEs high-priority in ITPA MHD group
See presentation by E. Fredrickson for more details 
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• Electron thermal transport
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• Wave heating and current drive

• Plasma formation with Coaxial Helicity Injection
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2004: Measured 80% B-X-O coupling of 
intrinsic thermal EBW - consistent with modeling

• 3-D ray tracing & full wave
EBW mode conversion model 
using EFIT magnetic equilibrium
& Thomson scattering Te & ne

f =16.5 GHz

NSTX Shot 113544

Calculated
EBW Trad

NSTX Shot 113544
EBW Frequency = 16.5 GHz

Te of EBW
Emission Layer

Time-Averaged
Measured
EBW Trad

1.5

1.0

0

Trad & Te
(keV)

1.5

1.0

R (m)

0 0.3 0.6

Radius of EBW
Emission Layer

RLCFS

Raxis

TIME (s)

0.5

Frequency = 16.5 GHz, Bt(0) = 4.5 kG

1.2

-1

0

1

1.6

fce 2fce

Z(m)

R(m)
0.80.4

UHR

LCFS
EBW
Rays

2fce

Electromagnetic
Antenna

Taylor et al., , PoPPoP 20052005
J. J. PreinhaelterPreinhaelter et al., AIP Proc. et al., AIP Proc. 787787, 349 (2005), 349 (2005)
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2005: Much lower B-X-O coupling ≈ 20% in some H-Modes may 
be due to EBW damping at Upper Hybrid Resonance (UHR)
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• Te ~ 10 - 30 eV near UHR, near 
foot of H-mode pedestal

• Collisional losses can be 
significant for Te < 30 eV

• EBW conversion efficiency 
sensitive to Zeff at low Te

• Measured emission polarization 
consistent with simulation

•• May need improved control of May need improved control of 
plasma parameters near UHRplasma parameters near UHR

Shot 117970
f = 25GHz

Measured TradSimulated Trad with Zeff = 0 at UHR
Simulated Trad with Zeff = 3 at UHR
Simulated Trad with Zeff = 5 at UHR

Trad (eV)

Polarization
from 

Simulation

Measured
Polarization

(E|| / E⊥)



HHFW power modulation experiments measured 
reduced power absorption fraction with current-drive phasings

kT (m-1) % Power 
absorbed

14 80

+7 70

-7 55

+3 < 20

• Parametric decay into surface waves may explain some of 
the power absorption dependence on kT

• Field pitch angle may explain differences between co & counter

33J. Menard – NSTX PAC-19
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For 1st time, closed-flux current has been generated in large ST  
using Transient CHI  (Previously studied on smaller HIT-II – UW)

J. Menard – NSTX PAC-19 35

• Plasma current amplified many 
times relative to injected current

• > 60kA of closed flux current 
generated using transient CHI

• Camera images from 12 to 17ms 
show clear detachment of plasma 
from injector region

• GOAL for 2006 and beyond:
– Increase IP to 0.5MA without 

using central transformer action
• METHOD:

– Make sufficient CHI plasma 
current to allow auxiliary heating 
and current drive tools to heat & 
further ramp IP

– The tools needed for this are 
only available on NSTX

6 ms 8 ms 10 ms

12 ms 15 ms 17 ms

Detachment

> 60kA closed-flux IP

See CHI presentation by D. Mueller 



Summary of 2005 NSTX Research Highlights

• Achieved record NSTX pulse-length discharges in a favorable ELM regime 
obtained with strong shaping and enhanced shape control

• Demonstrated particle control with Lithium coating

• Dramatically improved physics understanding of error fields, resistive wall 
modes, plasma rotation damping, and disruptions

• Correlated improved electron confinement with measured reversed q-shear

• Correlated significant fast particle loss with multi-mode “sea-of-TAE” bursts

• Improved understanding of EBW and HHFW coupling efficiency

• Demonstrated 60kA closed-flux plasma formation in NSTX using CHI

36J. Menard – NSTX PAC-19



NSTX makes important contributions to 
plasma science, ITER, and next-step STs

• Access to β of order unity new physics in transport and MHD

• Understand role of plasma geometry on stability (edge and core)

• Only major US facility investigating Li for pumping and power handling 

• Understand error fields and resistive wall modes - complements AT

• Understanding electron transport highly relevant to burning plasmas 

• Observe mode-induced fast ion loss - important to burning plasmas

• Non-inductive plasma formation (CHI) and current drive (EBW, HHFW) 
essential for ST, useful for AT

• Developing knowledge for extrapolating ST to CTF and reactor

37J. Menard – NSTX PAC-19
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