

Solenoid-Free Plasma Start-up

D. Mueller and the Solenoid-Free Plasma Start-up ET Presented at the 19th NSTX PAC February 22-24, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo JAERI Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Coaxial Helicity Injection (CHI) in NSTX

- a) NSTX machine components for transient CHI
- b) TV image early in discharge
- c) Later when the discharge nearly fills vessel

- Starts as helical discharge following B
- J_{pol} X B_{tor} is up into vessel

Relaxation dynamics and flux amplification in NSTX CHI experiments

- CHI plasma relaxation through helical instability cascade
 - Open flux kink to closed flux MHD modes
- For CHI plasmas
 - Dynamo probe can verify dynamo and anti-dynamo loop voltages
 - Mirnov coils measure helical perturbations (required for relaxation)

X. Tang and Boozer, Phys. Plasmas **11**, 2679 (2004); Phys. Plasmas **12**, 042113 (2005); Phys. Rev. Lett. **95**, 155002 (2005)..

Solenoid-free start-up is important for the ST

- Limited space for the center column in an ST necessitates alternative start-up and current drive
- Favorable scaling of current multiplication for Transient CHI observed between HIT-II and NSTX

	<u>HIT-II</u>	<u>NSTX</u>
ϕ_{tor}	0.17Wb	1.5Wb
l _{ini}	≥15kA	≥2kA
l _p	~90kA	~120kA

- CHI extrapolates to larger, high-current machine, e.g. CTF, with low injector current if
 - Apparent scaling with toroidal flux is maintained
 - Plasma temperature is adequate to achieve reasonable injector voltage

NSTX results in 2005 show clear evidence of current on closed field lines

RADIUS (cm)

RADIUS (cm)

NSTX -
$$I_p > 60 I_{inj}$$

(HIT-II - $I_p > 6 I_{inj}$)

Plasma position agrees with magnetic analysis T_e, n_e profiles 13 ms (black) 15 ms (red)

Produced persistent edge current drive by CHI on HIT-II

- CHI edge current drive can
 - Provide means to study reconnection
 - Persistent current
 - Well-characterized
 plasma
 - Control edge SOL flows
 - Improve stability limits
 - Induce edge rotation

• In NSTX, CHI applied to ohmic discharge produced an increase in total toroidal current

Plan to measure signatures of reconnection during edge current drive with CHI

- Apply constant V_{loop} , using feedback on I_{OH}
- Measure j(r), using NB source A for MSE
- Look for non-axisymmetric modes during reconnection (X. Tang, LANL)
- "Dynamo probe" tip on fast reciprocating probe will measure
 - $\tilde{n}_e, \tilde{T}_e, \tilde{\Phi}_s$ at 2 poloidal and radial positions

 $\widetilde{B}_{\theta},\,\widetilde{B}_{r},\,\widetilde{B}_{\varphi}$ at one location

- Provides information regarding models of the CHI reconnection by directly measuring the fluctuations

Solenoid-Free Plasma Start-up Plan for 2006

- Transient CHI (3 days)
 - 1 day before introduction of lithium evaporator, 2 after
 - Increase $V_{\rm CHI}$ to 2 kV
 - Investigate B_T scaling
 - Diagnose with fast camera, soft x-ray array, Thomson scattering, spectroscopy, bolometer
 - Study effects of conditioning (Li, He GDC, NB cryo-pumping)
- Edge current drive (1 day)
 - Study reconnection physics
- HHFW coupling study (Piggyback)
- Develop control for hand-off to inductive operation
- Assess alternative pre-ionization sources such as CT-Injection, EBW, Plasma Gun (PEGASUS), and high k_{II} HHFW for PF-only start-up

Solenoid-Free Plasma Start-up Plans for 2007 & 2008

- Extend CHI scaling studies to full TF
- Physics studies of reconnection during CHI
- Couple Transient CHI to ramp-up
- Continue development of PF-only start-up

- Pre-ionization selection (incremental in 2008)