Supported by

NSTX Facility/Diagnostics/Budget Update and Plans for FY 06 - 08

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Masa Ono

NSTX Program Advisory Committee Meeting (PAC-19) February 22- 24, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX Facility and Diagnostic Capabilities

Device Parameters

- R = 85 cm
- a = 65 cm
- $\kappa = 1.7 2.7$
- $\delta = 0.3 0.8$
- $B_{T} = 5.5 \text{ kG}$
- τ_{TF} (3.5 kG)~ 3 sec ~ 6 τ_{skin}
- I_p = 1.5 MA
- $V_{p} = 14 \text{ m}^{3}$
- $E_p \sim 430 \text{ kJ}$
- $P_{NBI} = 7.4 \text{ MW}$
- $P_{HHFW} = 6 MW$
- 350°C bakeout
- Passive Plates
- RWM Coils
- I_{CHI} ~ 400 kA
- 60 cm dia. ports
- Wide tang. access

Major Diagnostic Systems Confinement Studies

Magnetics for equilibrium reconstruction Diamagnetic flux measurement Multi-pulse Thomson scattering (30 ch) CHERS: $T_i(R)$ and $V_{\phi}(r)$ (51 ch) Neutal particle analyzer (2D scanning) FIRETIP interferometer (119mm, 6 ch) Density Interferometer (1 mm, 1ch) Visible brems strahlung radiometer (1 ch) Midplane tangential bolometer array X-ray crystal spectrometer: $T_i(0)$, $T_e(0)$ MSE-CIF (8ch)

MHD/Fluctuation/Waves

High-n and high-frequency Mirnov arrays Ultra-soft x-ray arrays – tomography (4) Fast X-ray tangential camera (2µs) Wave reflectometers FIReTIP polarimeter (6 ch, 600 kHz) Tangential microwave scattering Electron Bernstein wave radiometer Fast lost-ion probe (energy/pitch resolving) Fast neutron measurement Locked-mode detectors RWM sensors (n = 1, 2, and 3)Edge/divertor studies Reciprocating Langmuir probe Gas-puff Imaging (2µsec) Fixed Langmuir probes (24) Edge Rotation Diagnostics (T, V, V, V, 1-D CCD H_a cameras (divertor, midp 2-D divertor fast visible camera

Divertor bolometer (4 ch) IR cameras (30Hz) (3) Tile temperature thermocouple array Scrape-off layer reflectometer

Edge neutral pressure gauges

Plasma Monitoring

Fast visible cameras Visible survey spectrometer VUV survey spectrometer X-ray transmission grating spectrometer Fission chamber neutron measurement Visible filters copes Wall coupon analysis X-ray crystal spectrometer (astrophysics)

FY 05 Plasma Operations Completed Successfully

- o FY2005 Joule milestone: 17 run weeks
 Achieved: 18 run weeks producing 2221 plasmas.
- o All facility and diagnostic milestones completed on or ahead of schedule.
- o Excellent safety record in 2005.
 - Maintaining our tradition and goal!
- o New Research Capabilities introduced in FY 05 yielded exciting results:
 - New PF 1A divertor coils for strong shape control $\kappa \sim 2.7$, $\delta \sim 0.8$;
 - Error Field / Resistive Wall Mode (EF/RWM) coils powered by Switching Power Amplifier for plasma rotation and stability control;
 - 8 channel Motional Stark Effect (MSE) diagnostic for the first current profile measurement in high beta plasmas;
 - 30 ch MPTS for detailed profile particularly in the pedestal region;
 - 1.5 kV CHI capacitor bank and direct gas/ECH feed into injector for efficient current generation with closed flux surfaces;
 - Tangential high-k scattering system for electron transport study;
 - Movable glow probe for improved particle control/boronization.
- o Toroidal field coil joints operated very reliably at 4.5 kG.

New Research Capabilities for FY 06 Run

o FY2006 Joule milestone: 11 run weeks

- o Plasma operations to resume in February 2006 and end in May.
- o New Research Capabilities for FY 06 experiments
 - Lithium Evaporator for improved particle recycling control for high performance long pulse discharges (March);
 - Feedback capability for EF/RWM coils powered by Switching Power Amplifier to improve and extend high performance plasmas (March);
 - 12 channels for MSE diagnostic to improve current profile determination, particularly in the outer region (March);
 - 2 kV operation of CHI capacitor bank to extend closed flux surface formation to higher current (April);
 - Dual remotely steerable, obliquely viewing radiometers for EBW emission covering extended frequency range 8 - 40 GHz (March);
 - TF qualified to 5.5 kG;
 - TF pulse length can be extended by ~20% if needed.

MHD

NSTX Well Positioned for Cutting Edge EF/RWM Research

Active RWM control research on NSTX tests basic theoretical models needed for ITER and beyond

Transport and Turbulence

World leading diagnostics to address key transport physics

Boundary Extend high-performance discharges

Waves and Energetic Particles

Current and Pressure Profile Control for Advanced Regimes

Solenoid-Free Start-Up

Enables ST-CTF and Attractive Tokamak Reactors

Opportunities to extend NSTX device performance TF Joints are performing well

	FY 06	FY 07	FY 08
Run Weeks Base / Request	11	12 8	10 10

FY 2005

• TF pulse extended to 1.5 sec from 1 sec at 4.5 kG due to excellent joint resistance.

FY 2006

• TF Joints already tested up to 5.5 kG.

FY 2006 - 2007

- Extend TF pulse length as needed, extend toward 2 sec at 4.5 kG.
 - take credit for TF cooling during pulse
 - increase cooling water flow rate

<u>FY 2008</u>

• New OH coil with potential for higher I²t and more flux.

NSTX Budget Summary (\$M)

	FY 06	FY 07	
Budget level	Actual	Base	Incremental
Run Weeks	11	12	20
Facility Operation	17.7	18.2	0.9
Facility Upgrades	0.5	0.5	2.0
Facility Total	18.2	18.7	2.9
PPPL Research	9.7	9.8	0.2
Diag Upgrades	0.6	0.8	0.4
Coll. Diag. Interf	0.5	0.6	0.1
Collaborations	5.0	5.2	0.3
Science Total	15.8	16.4	1.0
NSTX Total	34.0	35.1	3.9

• 11 and 12 run week cases in FY 06 and 07 include minimal upgrades.

 Incremental budget allows better facility utilization, implementation of the 1 MW EBW system and other high priority upgrades.

Facility, Diagnostic and Budget Summary

- Very successful FY05 run:
 - 18 run weeks with all milestones completed on or ahead of schedule
 - Facility upgrades: New PF 1A coils; EF/RWM coils powered by 3 ch. SPA;
 1.5 kV CHI with improved ECH/gas; Movable GDC probe
 - Diagnostic upgrades; High-k Scattering, 30 ch. MPTS, 8 ch. MSE-CIF, Edge Reflectometer, EBW Radiometer (18-40 GHz), Fast-sFLIP
- Planning for exciting FY06 run with new capabilities:
 - 11 run weeks to start in February, end in May with June as contingency
 - Facility upgrades: Lithium Evaporator; EF/RWM coil feedback; 2 kV CHI
 - Diagnostic upgrades: 12 ch. MSE-CIF; Dual remotely-steered radiometer (8 - 40 GHz) for EBW emission; Dynamo probe for CHI; 1ms Multi-color T_e(r)
- New capabilities planned to support FY 07 08 plan:
 - Facility upgrades: 2nd Lithium Evaporator (LITER), PCS Processor Upgrade
 - Diagnostic upgrades: 16 ch. MSE-CIF; P-CHERS; D_{α} detector; 2.5MHz FIReTIP, 100µs Multi-color $T_{e}(r)$,Fast IR Camera

Incremental budget would allow NSTX to contribute significantly more to Burning Plasma Physics, AT Plasma Science and Configuration Optimization