Supported by

Excellent Science

Macroscopic Stability Research in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. UC Davis UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

A.C. Sontag

Columbia University

for the NSTX Research Team 19th NSTX Program Advisory Committee Meeting February 23, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX Contributions to MHD Stability Physics Give Strong Basis for Advanced Operations in ITER & STs

- □ NSTX research supports tokamak MHD physics in general
 - theories developed/tested on NSTX apply directly to tokamaks
 - Data comparison to theory extends our theoretical understanding; effects due to toroidicity, trapped particles, etc. of greater importance
 - unique operating space (beta, A, etc.) can be accessed to test theory thoroughly
 - \Rightarrow NSTX research builds physics knowledge for <u>all</u> tokamak devices
- MHD research in the next three years supports ITER & ST
 - new non-axisymmetric coils for active mode control and physics studies will be used to meet NSTX milestones
 - active control of error fields and the resistive wall mode (RWM)
 - active control effort will contribute to ITPA and USBPO MHD Task Force initiative to design joint ELM/RWM control coil for ITER

<u>New Facility and Diagnostic Upgrades Allow Testing of</u> <u>ITER-like Active Mode Control System</u>

VALEN Model of NSTX (J. Bialek)

6 ex-vessel midplane control coils

NSTX mode control system similar to ITER midplane port plug design

- □ EF/RWM coil and SPA capabilities:
 - □ 3 opposing coil pairs in anti-series (n=1,3)
 - n=2 interconnection also possible
 - 3 independent SPA circuits 3.3 kA, 7.5 kHz
 - \square produce 10-15 G n=1 resonant B₁ at q=2

Uses for NSTX:

- error field correction; active RWM control
- plasma rotation reduction/control
- \Box investigate Ω_{crit} profile by perturbing ω_{ϕ}
- □ study resonant field amplification (RFA)
- VALEN code used in system design and subsequent comparison to XP
 - initial comparison to MARS-F underway

Internal Sensors Measure Toroidal Mode Spectrum of <u>RWM for n = 1 - 3</u>

- **RWM** with n=1-3 components observed during unstable growth phase
 - first observation unstable RWM with n > 1 in a tokamak device
- Reconstructed mode shape similar to visible image
 - internal structure computed with DCON; amplitudes/phases from sensors

NSTX Data Show Scaling of Locked Mode Threshold With Density and Error Field

- Contributes to ITPA joint experiment on error field threshold scaling for ITER
 - B-field scaling determines size scaling of error field threshold
- External field applied to cause mode lock as density is varied
 - density scaling nearly linear
 - will widen B and n_e range in 2006 experiments
- Data suggest non-resonant error field significant
 - fit with m = 0, 2 components gives empirical 2.1 G threshold

A.C. Sontag - 19th NSTX PAC Meeting

NSTX Will Continue to Make Contributions to Disruption Physics Understanding Needed for ITER & CTF

- □ EM forces from current quench (CQ)
- PFC damage from thermal quench (TQ)
- multi-MA runaway electron (RE) plasmas
- \Rightarrow very high priority issue for ITER/ITPA
- □ ST advantage: reduced halo current forces
 - □ Pomphrey, *et al.* NF (1998)
 - □ MAST: measures smaller peak halo currents
 - NSTX: measures longer TQ times preceding CQ (Semenov *et al.*, PoP 2003)
- □ NSTX Plans for 2006-2008:
 - contribute additional I_P quench-rate and new I_{halo} data to ITPA ITER disruption database
 - install segmented halo Rogowski coils to measure toroidal peaking factors
 - □ better diagnose TQ evolution with tangential X-ray camera and multi-color USXR arrays
 - develop disruption onset and precursor detection
 - Correlate onset with linear/non-linear MHD stability calcs \Rightarrow disruption prediction
 - develop CQ, TQ, and RE impact projections for CTF based on ITER studies

<u>Correction of Error Fields Necessary for Sustained</u> <u>High-β Operation</u>

- Error field reduction key to ITER
- Rotation damped in "noncorrecting" direction
 - leads to earlier island locking and/or RWM formation
- Rotation decrease slowed in "correcting" direction
- Error field is time-variant due to motion of TF coil
 - inferred TF motion from error field structure
 - consistent with variation in TF joint resistance
- 2006 XPs to focus on dynamic error field correction

NSTX Verifying Generalized Rotation Damping Calculation Applicable for All Aspect Ratios

- Accurate calculation of rotation damping in NSTX requires complete model
 - EM torque on magnetic islands describes resonant component
 - R. Fitzpatrick, NF **7** (1993) 1049.
 - non-resonant damping due to neoclassical toroidal viscosity (NTV)
 - K.C. Shaing, Phys. Fluids **29** (1986) 521.
 - NTV must include trapped particle effects for quantitative agreement
 - 1/A^{1.5} scaling at low collisionality
 - full NTV calculation in correct geometry gets within a factor of 2
 - far better agreement than previously published results in other devices

Plateau Torque: $\propto \delta B^2 T_i^{0.5}$

Low Collisionality Torque: $\propto \delta B^2(T_i/v_i)(1/A)^{1.5}$

A.C. Sontag - 19th NSTX PAC Meeting

<u>Applied Non-Axisymmetric Fields Allows Plasma</u> <u>Rotation Profile Control in NSTX</u>

- Rotation profile controlled by either n = 1 or 3 fields
 - allows detailed study of rotational RWM stabilization
- Low rotation target for ITER-relevant study created in a controlled manner
 - rotation greatly reduced over 70% of poloidal flux before RWM goes unstable

A.C. Sontag - 19th NSTX PAC Meeting

Controlled Rotation Damping Allows Examination of Critical Rotation Profile

- Study of minimum plasma rotation profile required for passive stability
 - needed to design appropriate active control systems in future devices such as ITER & CTF
- First work (FY 2004) found 1/q² stability boundary as predicted by theory*
 - trapped particle effects weaken ion Landau damping
 - toroidal inertial enhancement more important
- Unique capability to modify rotation profile and passive stability added in 2005
- Recent rotation control results indicate rotation outside of q = 2.5 not required for stability
 - ⇒ could ease active control requirements for ITER & CTF
- Key research now aimed to find underlying dissipation mechanism for passive stability
 - *A. Bondeson, M. Chu, Phys. Plasmas 3 (1996) 3013.

A.C. Sontag - 19th NSTX PAC Meeting

Resonant field amplification (RFA) dependence on applied *n* = 1 field frequency determined using new coil set

- Applied field phased to propagate in toroidal direction
- Peak in RFA shifted in the direction of plasma flow

peak near 30 Hz

- Shifted resonance of stable RWM expected from theory / experiment
 - observed in DIII-D (H. Reimerdes, NF 45 (2005) 368.)
 - increases understanding/ confidence for active RWM stabilization

Joint NSTX/DIII-D ITPA Experiment on RWM Physics Started

- Exploring aspect ratio scaling of RWM critical rotation
 - leads to understanding of stabilizing dissipation mechanism
- Experiment matches RWM onset conditions as much as possible
 - **DIII-D** poloidal cross section matched in high- β_N NSTX discharges
 - magnetic braking used to drop below critical plasma rotation profile
- NSTX requires higher rotation for stability when rotation normalized to Alfven speed*
 - \square sound speed normalization removes ϵ dependence

<u>NSTX is Only ST Capable of Active RWM Control -</u> <u>Will Complement Research at Higher A</u>

Planned 2006-2008 NSTX MHD Experiments Use New Capabilities to Address Milestones & ITPA

Prioritized Experimental Plan from NSTX Research Forum

FY 2006:	<u>milestone</u>	<u>ITPA</u>
Error field correction: XPs by Menard and Strait	06-02	
Active RWM control: Sabbagh	06/07-02	MDC-02
RWM passive stability boundary: Sontag		MDC-02
\square High toroidal β via plasma shaping: Gates		
Low density locked mode threshold: Menard	06-02	MDC-06
FY 2007 - 2008 : (proposed for 2006, inadequate run time)		
NTM scaling: Fredrickson		MDC-04
\square n > 1 RFA : Sabbagh	07-02	MDC-02
n > 1 rotation damping: Sabbagh	07-02	
NSTX/DIII-D RWM similarity: Sontag	07-02	MDC-02
Detection of n > 1 residual error fields: Menard	07-02	
\square High toroidal β via error field reduction: Gates		

Priorities for 2007-8 to be determined at future Research Opportunity Forums

A.C. Sontag - 19th NSTX PAC Meeting

<u>MHD Research Plan Uses Recent Upgrades To</u> <u>Contribute to ITPA (ITER) and ST Research Goals</u>

- All necessary hardware for initial EF reduction / RWM control XPs installed and operational
- Have already made progress toward milestone completion
 - performed basic (static) error field correction studies
 - dynamic correction required due to time-varying error fields
 - active coil used to study RWM physics
 - passive stabilization dependence on plasma rotation profile
 - NTV non-resonant plasma rotation damping
 - resonant field amplification dependence on n = 1 applied field frequency
- Planned control experiments progress from dynamic EFC to RWM control over next two years
 - only difference is degree of latency allowable in control system
 - RWM control study to begin in FY 2006 to ensure success by FY 2007
- Additional experiments to study critical RWM physics relevant to ITER & next generation ST
 - strong attention to comparing theory with experiment in each study

