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Introduction
JT-60U

ITER
βN<~no wall ideal limit
fBS< 60%
τoperation~400-3000s

Steady-state tokamak reactor
βN > no wall ideal limit

requires suppression of resistive
wall mode (RWM)

fBS > 70%
Strong linkage of jBS(r), jtotal(r) and
transport

requires highly-integrated
plasma control

Expected Operational Space
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Large toroidal field ripple constrains
the operations in JT-60U

 High βN operation above no wall ideal limit
Wall stabilization effect

 High integrated plasma control
current profile control

Real time MSE measurement + LHCD

require the large volume configuration close to the outer wall.

In JT-60U,
large toroidal ripple  large fast ion loss

 Reduction of net heating power
 Confinement degradation due to counter rotation or

Er produced by large fast ion loss fraction
 Limitation of the LH operation due to large heat load

on LH anntena

JT-60U
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Ferritic steel installation

baffle plates

ferritic
steel LH

antenna

V.V. JT-60U had suffered from large toroidal field
ripple  high energy ion loss

– loss of net absorbed NB power
– large heat load to LHRF launcher
– etc…

 Ferritic steel were installed in the vacuum vessel
(~10% of the surface) to reduce the ripple.

 With ferritic steel expected are:
– net increase in PNB

abs (especially in a plasma
close to the outboard wall).

 high βN over no-wall limit
– reliable use of LHRF with high NB heating

 j(r) control in a high βN plasma

Ferritic steel
optimized at BT~1.8T

JT-60U
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30% increase in net heating power was
expected.

 Monte-Carlo simulations for fast ion behavior indicated that total
absorbed power is increased by 30% in the large volume configuration
( by 50% for perpendicular NB).
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 Reduction of heat load to the outer baffle plate due to the ripple loss was
observed (e.g., 0.2 MW/m2 with ferritic inserts, while 1MW/m2 without
ferritic inserts)
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Plasma shape detection is consistent with Ti
measurement.

• Plasma shape is detected with correction for magnetic flux produced by
the ferritic steel.

• Plasma expands for ~2 cm in outer-upper region.

• The last closed flux surface (LCFS) location evaluated from CXRS was
consistent with the reconstructed LCFS in an H-mode phase.

After ferritic
steel installation

JT-60U
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Counter rotation velocity decreases with
ferritic steel.

PP-NB=3.9 MW

BT=2.6 T, Vp=67 m3

E044271, E045072

PP-NB=8.3 MW &
PCO-NB=3.9 MW
BT=2.6 T, Vp=76 m3

Vp=76m3Vp=67m3

w ferritic steel

w/o
ferritic steel

w ferritic steel

w/o ferritic steel

• Reduction of the radial electric field attributed to decrease in the fast ion
loss made the counter rotation small.

• Nearly zero rotation with perpendicular NB injection and co-rotation with
CO-NB injection were observed.

E044295, E045123

JT-60U
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H-mode confinement was improved with
ferritic steel.
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 With decreasing the fast ion loss fraction by installing the ferritic steel,
the H-mode confinement was clearly improved.

 Pedestal temperature explicitly increased by the existence of ferritic
steel.

 Relation to the toroidal rotation and/or the radial electric field is under
investigation.

w ferritic steel
(ne=2.0x1019m-3)

Pfloss/Pabs =0.19

JT-60U
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High βN of 3.7 exceeding no-wall ideal limit
was achieved with RWM.
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 Increase in net heating power and confinement improvement  by reducing
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No serious effect of impurities was observed
with the ferritic steel.
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 Metal impurity lines were observed in the large plasma configuration close
to the outer wall.

 Contribution of metal impurity to the radiation was small.
 No increase in oxygen impurity was observed with ferritic steel.

C 8Cr2WFe
~4mm

JT-60U
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JT-60U Operation Plan

 Operation in FY2005 starts on Nov. 1
and continues until Mar. 2006.

 8 weeks experimental operation and
several weeks conditioning operation in
FY2005.

 Schedule in FY2006 is not yet decided
officially,  but operation will continue
until Sep. 2006, with a similar number of
weeks as in FY2005.

maintenance operation

CY 2004 2005 2006
FY 2004 2005 2006

11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

JT-60U

FY2005

M S M T W T F S Expwk

11 30 31 1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26 Boronization

27 28 29 30 1 2 3 Rayleigh

12 4 5 6 7 8 9 10
11 12 13 14 15 16 17 05-1-1
18 19 20 21 22 23 24 05-1-2
25 26 27 28 29 30 31

1 1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21 05-1-3
22 23 24 25 26 27 28 05-1-4

2 29 30 31 1 2 3 4 05-2-1
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25 05-2-2

3 26 27 28 1 2 3 4 05-2-3
5 6 7 8 9 10 11
12 13 14 15 16 17 18 05-2-4
19 20 21 22 23 24 25
26 27 28 29 30 31 1

Maintenance
Exp. Operation
Cond. Operation
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Major Targets of JT-60U Experiments during 2005-2006

1.  Achievement of longer sustainment (> 25 s) of βN = 2-2.5 and
HH~1.

2.  Achievement of high beta exceeding the free-boundary
stability limit (βN >~3.5).

3.  Extension of duration of high bootstrap current fraction (70-
80%) and development of control schemes of self-organized
plasmas.

4. Extension of performance under quasi-steady fully non-
inductive current drive condition.

5.  Extension of fusion triple product in long pulse discharges
(aiming at 5x1019 m-3skeV x 20 s)

6. Achievement of stationary sustainment of high confinement
under saturated wall conditions by active divertor-pumping.
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Status of Contribution to ITPA from JT-60U

 The Fourth IEA Large Tokamak Workshop (W62) on “Implementation of the ITPA
Coordinated Research Recommendations” was held on November 1-2, 2005, in General
Atomics.

 The number of proposals which need JT-60U is 34.

Topical Group
Number of
proposals

Discussion Results
Number of proposals
which need JT-60U

Confinement Database and
Modelling

5 E(3), E/D(1), D(1) 2

Transport Physics 15 E(14), D(1) 9
Pedestal and Edge Physics 10 E(10) 4
Scrape-off Layer and Divertor
Physics

13 E(11), P(2) 7

MHD, Disruption, and Magnetic
Control

9 E(9) 4

Steady-State Operation 8 E(6), D(1), P(1) 8

Total 60 E(53), E/D(1), D(3), P(3) 34

ITPA/IEA　Joint Experiments between Various Tokamaks

・E:The IEA program leaders accepted this item as a well defined joint experiment
・D:The proposed activity appears to be a joint experiment but further definition is required
・P:The item proposed was judged to be important programmatic activity appropriate to the
research of the ITPA but not a joint experiment
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Status of
JT-60U Modification*

 Euratom

*referred as NCT tentatively in
this document.
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JA-EU Satellite Tokamak Working Group

Terms of Reference
(1) Review JA technical proposal and estimated costs of JT-60 modification program in order to

assess the suitability of the proposed changes for the use of JT-60 as a satellite tokamak to ITER
in the BA context;

(2) Identify possible areas of contribution by the EU to the procurement of the modifications and in the
subsequent exploitation of the machine in the BA context;

(3) Envisage the organization of the exploitation of the modified JT-60, including the possible role of
the EU;

(4) Identify elements for a joint scientific programme of exploitation in the BA context;
(5) Submit a joint interim report by Mid November 2005 containing its findings and recommendations.

Members
Chair: S. Matsuda (JAEA)
JA members: M. Kikuchi (JAEA, Contact Person), Y. Miura (JAEA), Y. Takase (U. Tokyo),

M. Matsukawa (JAEA), S. Sakurai (JAEA)
EU members: F. Romanelli (ENEA, Contact Person), J. Pamela (EFDA), D. Campbell (EFDA CSU),

C. Sborchia(IPP), J.J. Cordier (CEA), S.Clement-Lorenzo (EC).

Meetings
(1)  Informal meeting: September 20, 2005 at Genova
(2)  1st meeting: October 5,6, 2005 at NAKA
(3)  2nd meeting: November 3,4,5 at Garching
(4)  3rd meeting: November 14,15 at NAKA
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Role of Satellite Tokamak in the Broader Approach

The EU and JA have agreed that within the “Broader Approach”,
the Satellite Tokamak should serve the following functions:

• During ITER construction:
- to optimize operation scenarios for ITER
- to optimize ITER auxiliary systems which come later in the construction of ITER
- to train, in an international environment, scientists, engineers and technicians

in view of the integrated operation and scientific exploitation of ITER

• During ITER operation:
- to support further development of operating scenarios and the understanding of

physics issues
- to test possible modifications before their implementation on ITER

• The main functions in support to DEMO will be to explore operational
regimes and issues complementary to those being addressed in ITER. In
particular these will include:

- steady state operation
- advanced plasma regimes (higher normalized plasma pressure: β)
- control of power fluxes to walls.
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Modified JT-60U Facility

 Euratom
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Modified JT-60U Facility

 Euratom

 

• Extension of the heating and current drive (H&CD) capability to 41MW for 100s,
involving improvements in the performance of the neutral beam and electron
cyclotron heating systems;

• Inclusion of an option for upgrading to metallic Plasma Facing Components,
while ensuring a high power handling capability;

• Increase in the neutron budget by an order of magnitude with respect to the original
proposal to allow for a comprehensive exploitation of the device capabilities, which
requires the in-vessel components to be remote handle-able.

Sub-system Composition Torus input 
P-NBI (85keV) co-injection 2units x 2MW 4MW 
P-NBI (85keV) counter-injection 2units x 2MW 4MW 
P-NBI (85keV) perpendicular 8units x 2MW 16MW 
N-NBI (500keV) co-injection 2units x 5MW 10MW 

ECRF 110GHz + 140GHz 
4units x 0.75MW 
+5unitsx0.8MW 

7MW 

Total  41MW 
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Scenario (ELMy H-mode and Hybrid Operation)

Analysis of NCT’s capability for exploration of ELMy H-mode and hybrid scenarios
indicates that it can explore a wide range of ITER-relevant issues. In particular, the
possibili ty to operate in long-pulses (~100s) with ITER-shaped plasmas at
3.5MA/2.42T.

NCT(3.5MA)
ITER

• TOSCA calculation shows
that the necessary flux for the
flat top plasma current for
3.5MA,100sec (30MW,
CO(4)+CTR(4)+Perp(16)+NN
B(6)) is about 13Wb.

• It is estimated that the plasma
current of 3.5MA is sustained
for 100sec.

ITER NCT 3.5MA
R 6.2 3.16
a 2 1.02
A 3.1 <-

κ95 1.7 <-

δ95 0.33 <-

BT 5.3 2.42

IP 15 3.5

q95 3 <-

nGW 1.19E+20 1.07E+20
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Scenario (Non-inductive steady-state operation)
- The analysis of NCT’s capability for exploration of a full current drive scenario
shows that 3 MA/2.44T full current drive with a Greenwald fraction fGW of 0.55,
bootstrap current fraction, fBS of 0.56, HH98y2 = 1.30 and q95=5.3 is possible using
the total power of 41 MW (24MW P-NBI, 10 MW N-NBI and 7 MW ECRF).  The
achievable normalized beta, βN, is 3.6.

41 MW (P-NB: 24MW(BAL),
             N-NB: 10MW, EC: 7MW),
A~2.65, 2.4 MA, 1.79T, q95=5.5,
HH98y2 = 1.32, fBS = 70%, βN=4.4,
fGW~0.88. 0
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- A higher βN of 4.4 at fGW =0.88, fBS=0.70, HH98y2 = 1.32 and q95=5.5, (which is
similar to JA designed DEMO J05, slim CS), is possible at 2.4MA/1.79T with the
total power of 41MW.
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Comparison with DEMO J05, slim CS
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Equilibrium and PF Control
NCT appears to have considerable flexibility for equilibrium variations
providing access, in principle, to a wide range of physics studies:

• Studies of vertical stability confirm the importance of the stabilizing plate.

• Internal coils for fast position control will provide additional flexibility

In-Vessel V-coil

RWM control coil 

 
Stabilizing plate
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CS3

CS4
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EF5
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EF2EF3

N-NBI
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In-Vessel H-coil
With EF7

W/O EF7

δ

βp
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Summary
-Recent Results and Plans of JT-60U
 Ferritic steel was installed for reducing the toroidal field ripple.

 Reduction of fast ion loss and counter rotation were observed.

 Confinement improved with decreasing fast ion loss fraction.
 High βN exceeding no wall ideal limit was achieved.

 No serious impurity effects were observed.

 International and domestic collaborative research is performed 
 intensively

- Status of JT-60U Modification
• Heating and current drive capability is now 41 MW for 100 sec.

• Inclusion of an option of metallic PFC.

• Increase neutron budget => in-vessel components to be remote
handle-able.


