

Program & Plans for EBW and HHFW Research on NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL **PPPL PSI**

Princeton U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

UCLA

UCSD

Think Tank, Inc.

SNL

Joel Hosea & Gary Taylor
For the NSTX Team

21st NSTX Program Advisory Committee Meeting (PAC-21) January 17-19, 2007

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U Quebec**

Culham Sci Ctr

EBW and HHFW Heating and Current Drive are Important Elements for Attractive ST and Component Test Facilities

- ⇒ With NBI for non-inductive current drive
- ⇒ Without NBI for startup to produce conditions suitable for NBI
- Strategy for startup is proposed in response to PAC-19 request Considerable progress made in FY06:

EBW

- Shown viable for L-mode at fundamental (f_{ce})emission frequencies
 - However, low second harmonic (2f_{ce}) EBW emission measured for L-mode
- Also, observed very low EBW emission for H-mode at f_{ce} & 2f_{ce}
 - Understanding emission in H-mode is principle goal for 2007

HHFW

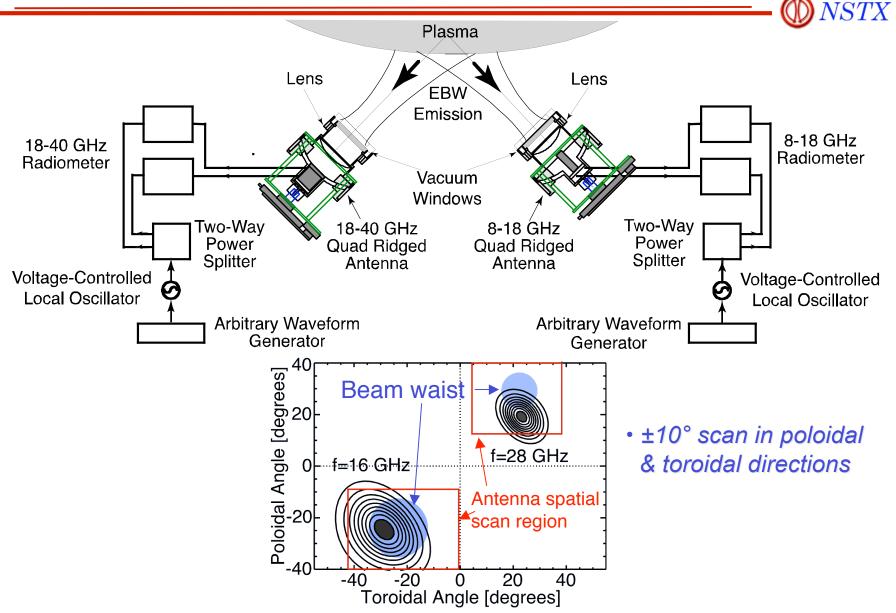
- Dramatic increase in core heating efficiency at higher B_t
 & lower edge n_e
- Edge loss effects similar to those observed at lower ICRF harmonics (ITER relevant)
- Efficient heating maintained in presence of NBI heating
 - Sets stage for current drive studies with MSE in FY07

Results & Plans for EBW Research

EBW Research Goals for FY07-09

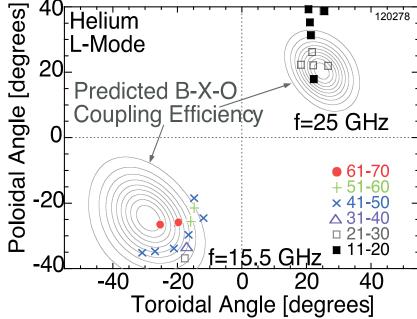
FY07:

- Study H- & L-Mode coupling physics with improved diagnostics
- Investigate behavior of EBW coupling on plasma shape, z, Ip etc.
- Compare to EBE simulation with kinetic model EBW collisional damping

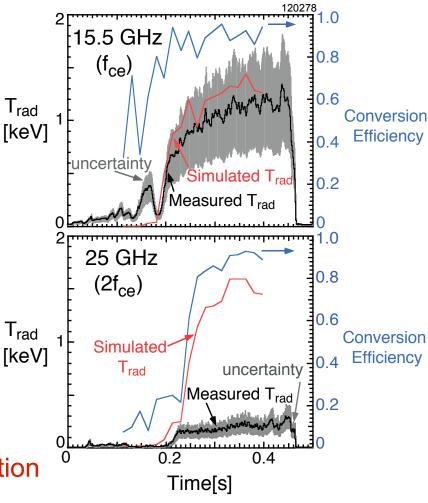

FY08:

- Continue optimization EBE studies
- Install ~ 200 kW 28/15.3 GHz ECH/EBWH system (pending review)

FY09:

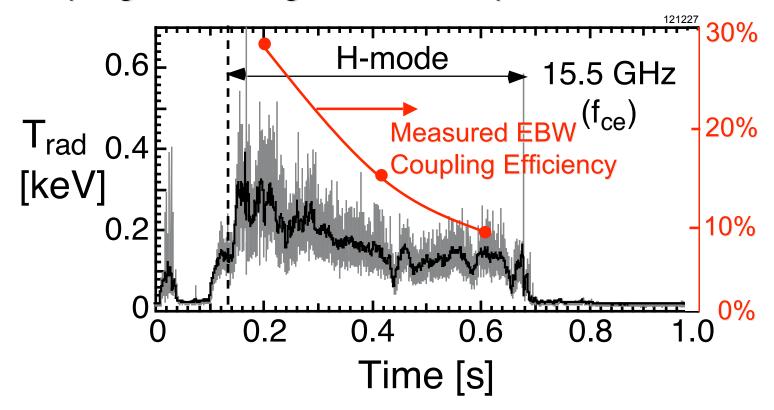

ECH/EBW expts. with CHI & PF-only startup at 100 - 200 kW

New Remotely Steered Antennas Provided Angular Mapping of B-X-O Emission Window during 2006



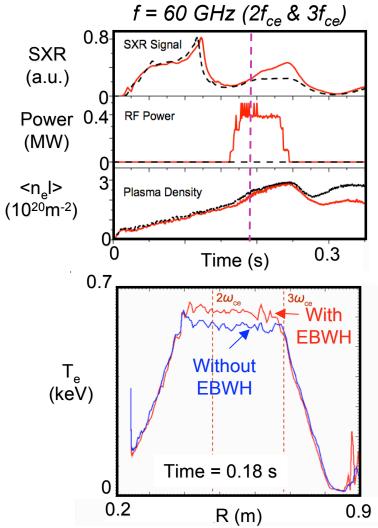
L-Mode B-X-O Emission Data from 2006 Run Agrees Well With Modeling at f_{ce}, but not 2 f_{ce}

- Measure 70 ± 20% f_{ce} coupling, but only ~ 25 ± 10% 2f_{ce} coupling
- EBW emission simulation predicts ~ 90% coupling at f_{ce} & 2f_{ce}

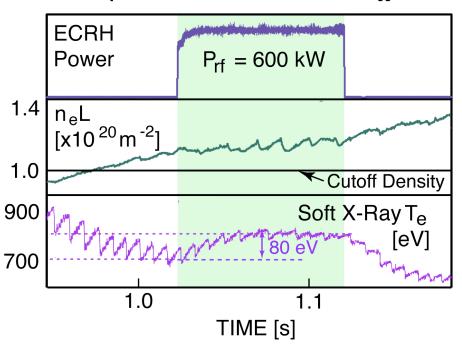

- Possible causes:
 - large Doppler broadening effects resulting in off-axis damping
 - EBW damping at conversion layer
 - problems with EBW emission simulation

Very Low B-X-O Emission Measured During H-Mode Plasmas

- < 30% B-X-O coupling from H-mode plasmas
- Coupling falls throughout H-mode phase


- -> Possible causes collisional damping, edge bootstrap current, refraction
 - EBW emission research contributing to PhD thesis

EBW Heating via B-X-O Coupling Recently Demonstrated on MAST & TCV


MAST

Compressed High Density H-Mode

TCV

$$B_t(0) = 1.5 \text{ T, } f = 82.7 \text{ GHz } (2f_{ce})$$

EBW Diagnostic Upgrades Implemented to Improve Study of B-X-O Coupling Physics in 2007

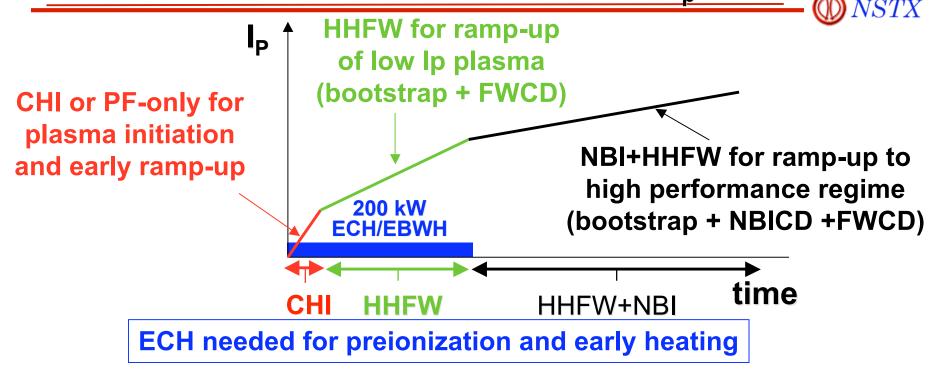
- Sweep range of EBW radiometers increased:
 12-18 GHz & 24-32 GHz → 8-18 GHz & 18-36 GHz
- Improved angular coverage & tighter focusing for remotelysteered EBW antennas
- Gas injector installed near EBW antennas to investigate effect of collisions on B-X-O coupling
- Wide acceptance angle (>80°) 8-18 GHz antenna on midplane

2007 EBW Expts to Elucidate Low EBW Coupling in H-mode & Disagreement with Simulation in L-Mode

- Study dependence of EBW coupling on plasma shape, z, I_p etc....
- Low T_e at B-X-O conversion layer may cause EBW damping:
 - local gas puffs & Li conditioning to modify edge T_e & n_e at conversion layer to change collisionality
- Investigate EBW emission behavior at L-H & H-L transition
- Bootstrap current at H-mode pedestal can change field pitch at UHR moving B-X-O emission window outside acceptance angle:
 - Wide angle antenna to look for EBE outside acceptance angle

Enhance NSTX EBW Experimental Research Through Modeling & Collaboration

- $\bigcirc NSTX$
- MAST collaboration: 28 GHz start-up/ramp-up experiments (Jan 2007)
- Benchmarking BANDIT and CQL3D/GENRAY EBW ray tracing and current [CompX/loffe Inst./MAST] (Jan 2007)
- Include kinetic model of EBW mode conversion in GENRAY [CompX/MIT] and EBE simulation code [Prague IPP]
- 2-D EBW mode conversion modeling [MIT]
- Model EBW-HHFW synergy probably weak PAC-19 action item [CompX]
- δf PIC simulation of EBW mode conversion to look for nonlinear EBW self-interaction [U. Colorado]


200 kW ECH/EBWH Proposed for Non-Solenoid Start-up & EBWH Tests Into I_p Flat Top in 2008-9

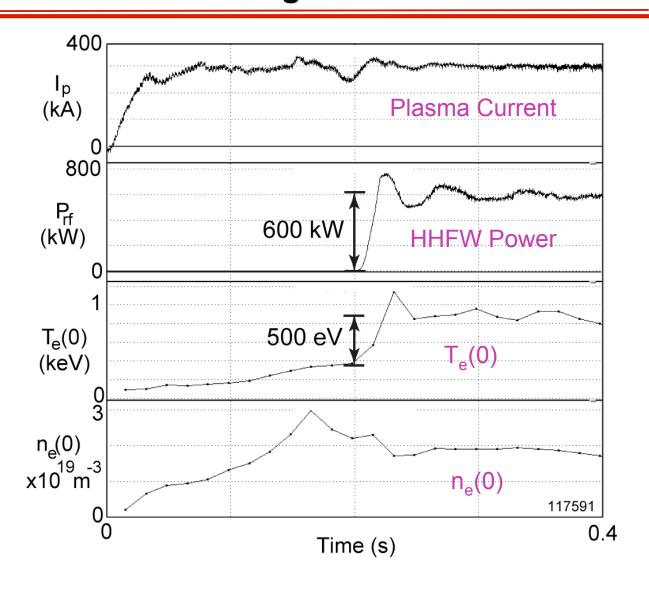
- ORNL proposing ~200 kW ECH/EBWH system (pending review)
 - Heating for CHI & PF-only start-up plasmas
 - Provide ~ 100 eV start-up plasma for effective HHFW heating to support ECH/EBWH/CHI transition to HHFW current ramp-up
 - Conduct low power EBW coupling & heating during I_p flat top
- System can be operational at 28 & 15.3 GHz for FY09 run campaign
 - Modest development and testing (e.g. verify 15.3 GHz operation)
- 28 GHz $2f_{ce}$ on-axis ECRH at $B_o = 0.55$ T when $n_e(0) < 9x10^{18}$ m⁻³

	Frequency/	Resonant Field	Major Radius	Normalized	Critical	
	Harmonic #	(T)	(m)	Minor Radius	Density	
					x10 ¹⁸ m ⁻³	
	28 GHz/fund	1	0.47	-0.61	9.2	
→	2nd	0.5	0.94	0.14	9.2	+
	3rd	0.33	1.41	0.9	9.2	
	15.3 GHz/fund	0.55	0.86	0.02	2.7	

12

ECH/EBWH System Provides Transition from Non-Solenoid Startup to HHFW I_n Ramp

Single pass HHFW absorption on a CHI-only target is 0%


ECRH can create n_e, T_e for adequate HHFW absorption

T _e (0)	n _e (0)	% HHFW absorbed				
100 eV	5x10 ¹⁸ m ⁻³	2%				
100 eV	9x10 ¹⁸ m ⁻³	~10%				
300 eV	9x10 ¹⁸ m ⁻³	~30%				

METS Single-Pass Modeling Estimates

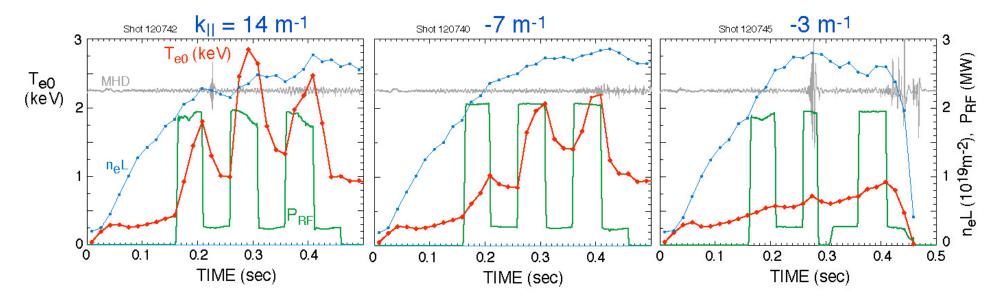
Low I_p, n_e, T_e HHFW Supports ~100 kW EBWH being Detectable

Results & Plans for HHFW Research

HHFW Research Goals for FY07-09

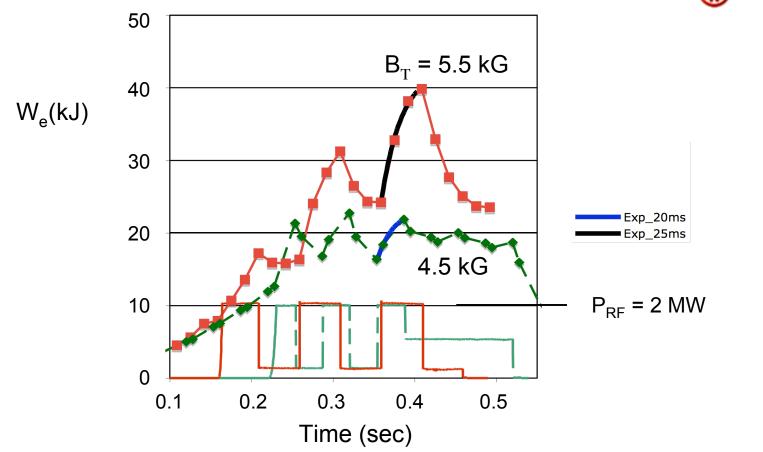
FY07-08:

- Establish coupling and heating physics compare with theory that includes edge loss mechanisms - collisions, sheaths, PDI, turbulence (ITER relevant)
- Optimize current drive at high field
 - With and without neutral beam injection
- Explore coupling/heating of CHI plasma and simulated CHI/ECH plasma (ohmic plasma with low current and T_e)


FY09:

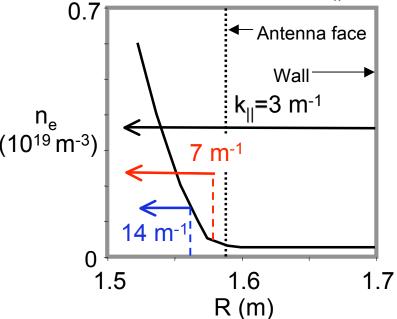
- Establish startup scenarios with CHI + ECH
- Begin HHFW antenna feed upgrade to enhance coupled power by a factor > 2 (under incremental budget)
- Incremental milestone to characterize & optimize edge plasma-HHFW interactions

HHFW Propagation and Damping Physics Studied vs B_T and Antenna k_{II} in 2006


Electron heating for $B_T = 5.5 \text{ kG}$, $I_P = 720 \text{ kA}$

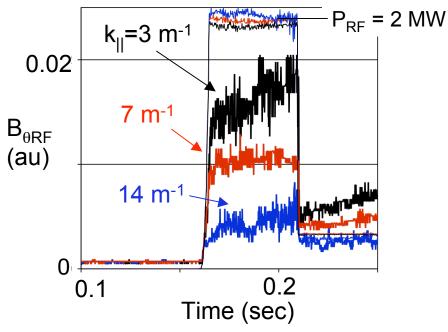
- Clear strong dependence on $k_{||}$ almost no heating at $k_{||}$ = 3m⁻¹
- Heating at $k_{\parallel} = -7m^{-1}$ comparable to $k_{\parallel} = 14 m^{-1}$
- Heating at $k_{||} = -7 \text{ m}^{-1}$ for first RF pulse about half that for $k_{||} = 14 \text{m}^{-1}$
 - edge density during the first RF pulse is well above onset value for fast wave perpendicular propagation
- Ray tracing and full wave simulations of 3D global wave structure underway

ΔW_e for $k_{||}$ = -7 m⁻¹ Increased Substantially as B_T Increased from 4.5 kG to 5.5 kG



- ΔW_e for B_T = 5.5 kG is ~ 2 times the value for 4.5 kG over same time interval
- RF power deposition to electrons increases from ~ 22% to ~ 40% at the higher B_T and total efficiency increases from ~ 44% to ~ 65%

Fast Wave Propagation at Lower n_e for Lower k_{||} Appears to Contribute Strongly to Power Losses in Edge Regions

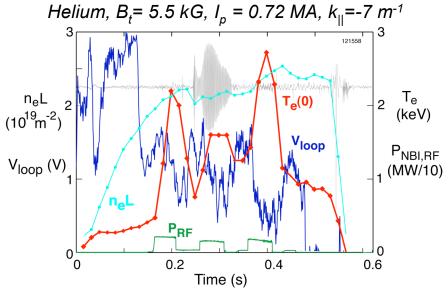

Perpendicular wave propagation onset

in edge regions - $n_{onset} \propto B^* k_{\parallel}^2$

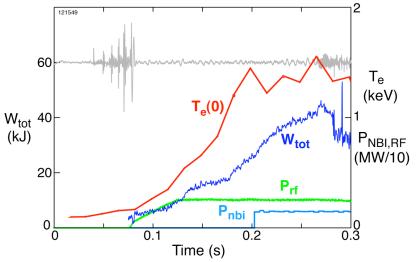
RF far surface fields vs k_{II}

- probe on opposite side from antenna

- Propagation close to wall at $k_{||} = 7 \text{ m}^{-1}$, on wall at $k_{||} = 3 \text{ m}^{-1}$
 - \Rightarrow Losses in surface should be higher for lower k_{\parallel}
- RF probe signals are a strong function of k_{II}
 - ⇒ structure & sheath losses should increase going from 14 m⁻¹ to 3 m⁻¹
- Increasing B should push onset further from antenna and increase heating
- RF SciDA developing models to quantify edge fields and sheath losses

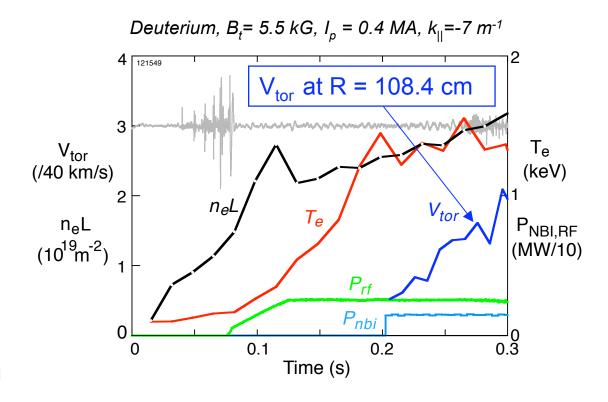

Higher Core Coupling Efficiency Sets Stage for CD Experiments in FY07-08

• Repeat earlier V_{loop} comparisons at $k_{ll} = \pm 7 \text{ m}^{-1}$ for same P_e profiles


⇒ with observed higher efficiency, more HHFW-CD expected at 5.5 kG

 Direct MSE measurement of HHFW-CD planned

⇒ Initial test of HHFW with 70 kV suggests that an MSE measurement of HHFW-CD may be viable at high B_T


Deuterium, $B_t = 5.5 \text{ kG}$, $I_p = 0.4 \text{ MA}$, $k_{\parallel} = -7 \text{ m}^{-1}$

20

Successful HHFW Operation with NB Permits Measurement of Rotation with HHFW

- Initial rotation measurement made in FY06 run
- Need to scan the measurements vs RF power and k_{||} to determine the rotation properties
- Supports ITPA studies on plasma rotation with no external momentum input (TP-6.1)

HHFW Theory & Modeling Support Provided by Multi-Institutional Collaboration

- Previous studies focused on HHFW propagation and absorption in plasma core
- Current research priorities include:
 - 3D reconstruction of HHFW fields and power flow, including collisional loss [CompX, MIT, ORNL, PPPL]
 - Benchmarking of TORIC / TOPICA against NSTX data [MIT, RF SciDAC, PPPL]
 - Development of PIC code simulation of wave dynamics in edge regions [TechX / RF SciDAC]
 - Development of edge sheath boundary conditions for wave codes [Lodestar, ORNL / RF SciDAC]
 - Investigation of possible HHFW to slow wave mode conversion [PPPL, RF SciDAC]
 - Self-consistent simulation of HHFW interactions with energetic ions [RF SciDAC]
 - Installation of HHFW modules in TRANSP for time-dependent analysis [CompX, MIT, and PPPL]

Proposed FY07 Waves-ET Experiments

Priority	Experiment	ST	Tor. Sci.	ITPA
1	HHFW Current Drive at High B _t	Х	х	
1	HHFW Power Balance Optimization at High B _t	Х	х	
1	EBW Coupling at 8-40 GHz for H-Mode Plasmas	Х	х	
1	EBW Coupling at 8-40 GHz for L-Mode Plasmas	Х	х	
2	HHFW + NBI Rotation	Х	х	х
2	Absorption of HHFW on Beam Ions	Х	х	
2	13 m ⁻¹ HHFW CD Phasing	X	Х	