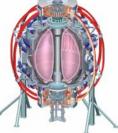
Supported by

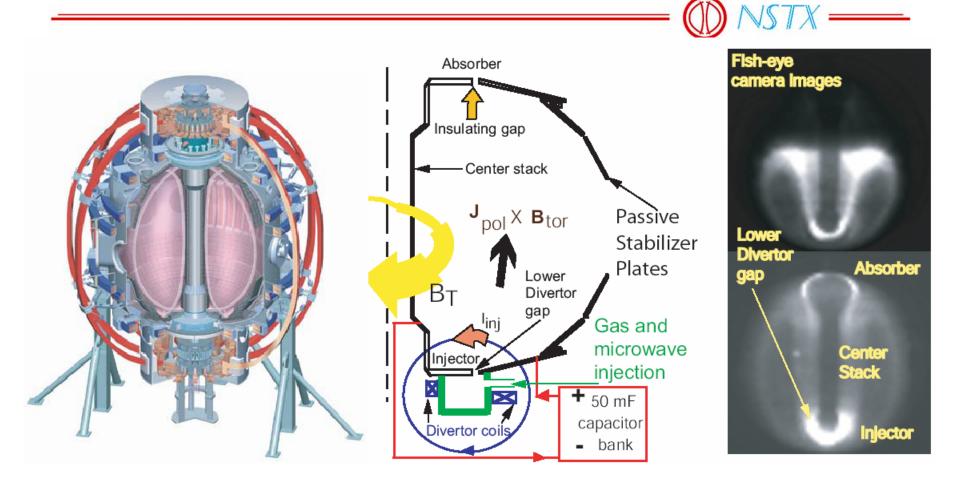


Office of

Solenoid-free Plasma Startup plans on NSTX for the 2007 to 2009 period

Roger Raman and Dennis Mueller For the NSTX Team

NSTX Program Advisory Committee Meeting (PAC-21) PPPL 17-19 January 2007

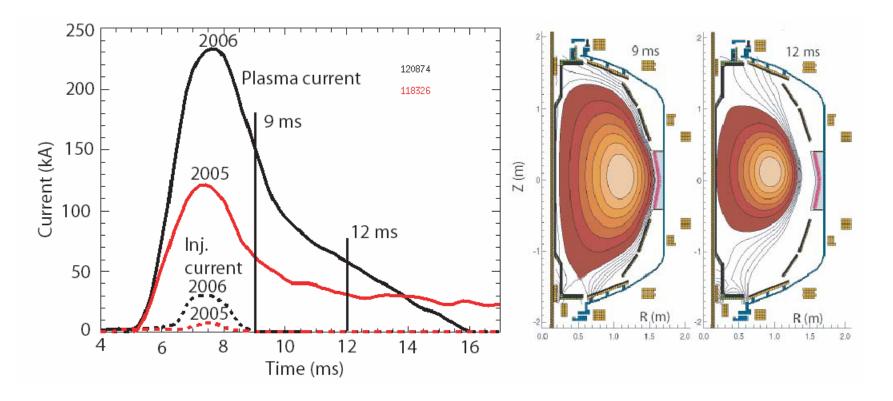

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR. Czech Rep

Motivations for Solenoid-free Plasma Startup Program

- The development of methods for solenoid-free current initiation will improve the prospects of the ST as a fusion reactor
- Could result in a more compact tokamak
- Of the three large machines in the US (DIII-D, NSTX, C-Mod) only NSTX is engaged in solenoid-free plasma startup research
- NSTX is exploring CHI and Outer PF Startup as methods for plasma current initiation

<u>Goal</u>: Initiate solenoid-free plasma currents, couple to non-inductive CD methods and ramp-up to high beta, high bootstrap current fraction discharges

NSTX Incorporates Toroidal Insulation Breaks to Enable CHI Operation

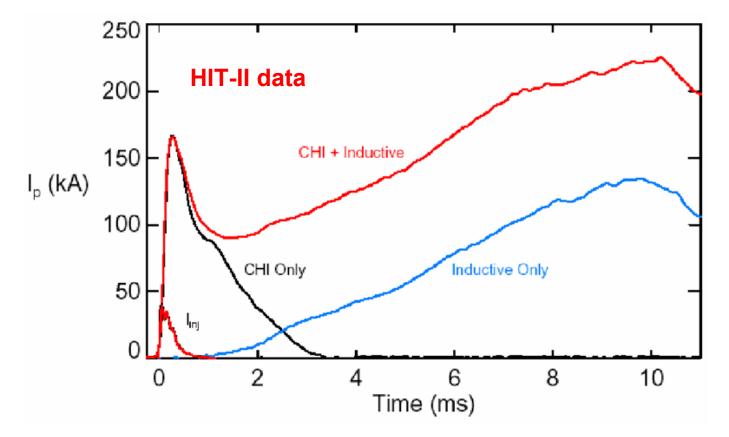


Transient CHI: Axisymmetric reconnection leads to formation of closed flux surfaces. *CHI for an ST: T.R. Jarboe, Fusion Technology,* **15** (1989) 7 *Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL* **90**, (2003) 075005-1

Upgrades Enabled Progress in Transient CHI

- Improved upper divertor insulator design
- Replaced rectifier power supply with capacitor bank
- Added Metal Oxide Varistors and capacitor snubber
 - Reduce transient voltages across insulators
- Added gas & ECPI injection from lower divertor region
- Added "crowbar" resistor across capacitor bank
- Improved voltage monitoring (for FY 07)
- MOV current monitoring (for FY 07)

160 kA Closed Flux Current Produced in NSTX



- 2006 discharges operated at higher toroidal field and injector flux
- EFIT analysis possible when no injector current is present
- Magnetic sensors and flux loops used in reconstruction

R. Raman, B.A. Nelson, M.G. Bell et al., PRL 97, 175002 (2006)

FY 08 Milestone: Couple Induction to CHI Initiated Discharge

Results from HIT-II show nearly all CHI-produced closed flux current is retained in the subsequent inductive ramp

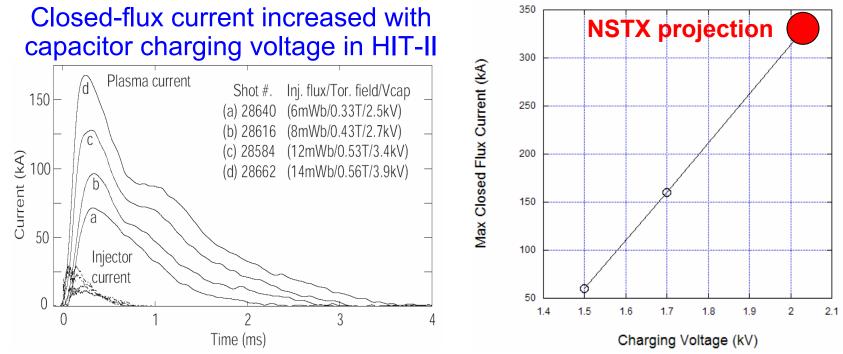
Both discharges have identical loop voltage programming

R. Raman, T.R. Jarboe, R.G. O'Neill, et al., NF 45 (2005) L15-L19

Research Forum Prioritization of FY 07 CHI Experiments

Experiment	5-Day <u>Run Plan</u>	10-Day <u>Run Plan</u>
Transient CHI – Startup optimization	2	3
Transient CHI – Couple to induction	3	5
Heat OH plasmas with HHFW	0	1-2
Heat CHI plasmas with HHFW	Piggyback	0.5-1
Dynamo Probe studies	Piggyback	Piggyback

 \bigcirc NSTX —


FY 07 Plans for CHI

- Optimize high current CHI discharges
 - Use fewer capacitors
 - Reduce potential for absorber arcs which affect main discharge
 - Increase capacitor bank voltage to 1.85kV (new charging supply and improved voltage monitoring)
 - Operate at higher values of TF (if available voltage permits)
- Couple to induction
 - Measure flux saving
 - Initially ramp OH solenoid unidirectionally from zero current
 - Later investigate using small amount of solenoid pre-charge
 - Increases available flux and initial inductive loop voltage
 - Investigate effects of solenoid fringing field on formation and equilibrium
- Test HHFW heating of CHI+OH plasmas
 - Determine effectiveness of HHFW at low current

NSTX & HIT-II Results Indicate Further Improvement to CHI Target Possible

- Results indicate 300kA should be possible in NSTX at 2kV
 - Planned for 2008

- Present CHI discharges in NSTX should couple to induction
 Plasmas reach 10 20 eV and radiate ~100kW
- + 100 200 kW of ECH could increase T_e to ~100eV in NSTX
 - Expect adequate HHFW absorption at this temperature

HIT-II data: R. Raman et al., Nucl. Fusion, 45, L15-L19 (2005), Phys. Plasmas 11 (2004) 2565 9

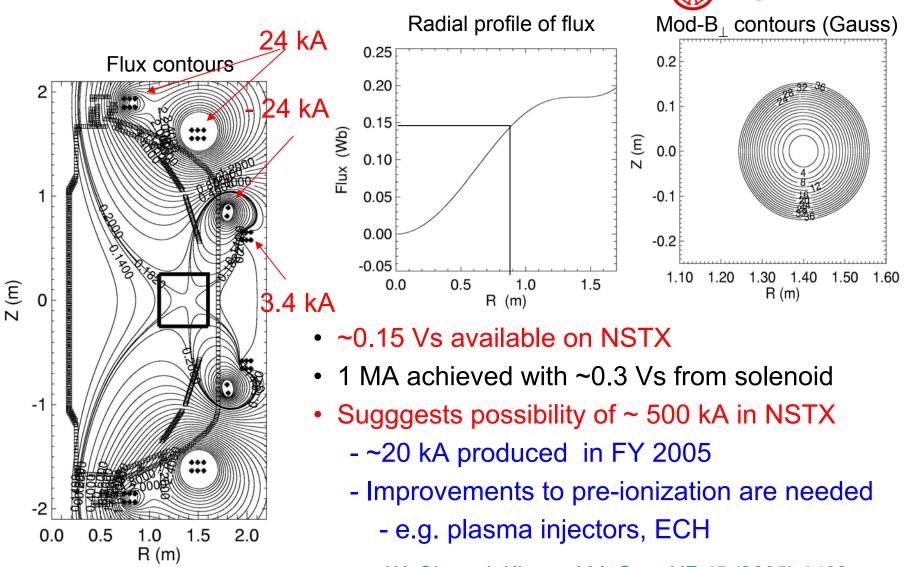
FY 08 Plans for CHI

- Increase CHI capacitor bank voltage to 2kV
 - If necessary install new surge suppressors
 - Increase CHI produced current magnitude to ~300kA
 - Improve coupling to induction (Milestone guided by PAC 19)
 - Produce a standard CHI-initiated discharge for use by other experiments
- Use CHI for edge current drive in a pre-formed inductive discharge
 - Diagnose using the Dynamo Probe

FY 09 Plans for CHI

- Apply ECH and HHFW heating to CHI plasma
 - Use outer PF for additional volt-seconds
 - Optimize solenoid-free current fraction
- Measure edge current penetration in CHI edge current drive experiments
 - Use MSE diagnostic
 - Determine effect on plasma edge stability

Plasma Startup Using Outer Poloidal Field Coils


Outer PFs has been used to startup the plasma:

- MAST (START) poloidal field coils + radial compression
- JT-60U Aggressive application of RF heating and current drive

Three important conditions for "Inductive" plasma startup:

- 1. Satisfy the "Lloyd condition" for plasma startup. With strong ECH (in DIII-D), $E_T \cdot B_T / B_P \ge 0.12$ kV/m.
- 2. The field null must be maintained for a sufficient duration 2-3 ms in the presence of wall eddy currents.
- 3. Sufficient available flux for subsequent current ramp up to \sim 500 kA.

Creation of High-Quality Field-Null with Significant Poloidal Flux is Possible with NSTX PF Coils

CHI and Outside PF Induction Could be Used Synergistically to Increase Startup Current

- Transient CHI works well
 - Successful initial development on HIT-II
 - Produced record non-inductive initial current in NSTX
 - Scaling to larger machines is attractive
- Next goal is to couple CHI to induction (FY 08 Milestone)
- Heat CHI plasma with ECH and HHFW (FY 09)
- Test plasma startup using outside PF induction (FY 09)
 Potential to produce MA level startup currents in large STs
- NSTX is the only large machine is the US studying these
 - CHI is unique to NSTX
 - Edge current drive has potential for edge current profile control
 & modification of SOL flows