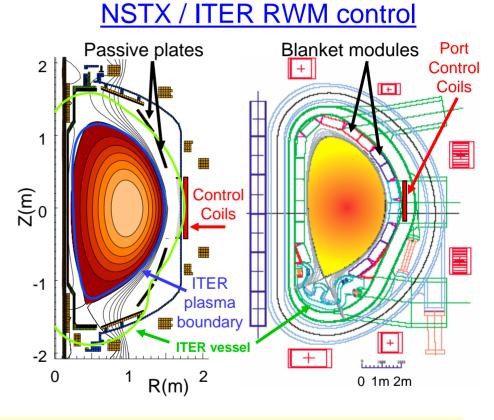


Macroscopic Stability (MHD) Physics in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank. Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado U Maryland **U** Rochester **U** Washington **U Wisconsin**

Steven A. Sabbagh Columbia University for the NSTX Research Team

NSTX PAC Meeting 21


January 18th, 2007 Princeton Plasma Physics Laboratory Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

MHD physics research plan provides both focus and balance to address critical fusion program issues

Focused plan built from great progress

- NSTX milestones addressed
- High-level publications and invited talks in 2006
- Balanced research plan addressing program needs
 - 2 ITER issue cards
 - 4 ITPA tasks
 - Relevant physics for ITER, CTF, KSTAR

<u>Advantage</u>: low aspect ratio, high β provide high leverage to uncover key tokamak physics (e.g. RWM control, rotation damping, high elongation)

Solid Progress in MHD Research, now Addressing Advanced Goals

Major Accomplishments

- RWM active stabilization at low rotation (ITER-relevant)
- Observed plasma rotation damping by NTV physics
- Dynamic error field correction increases pulse length
- □ Unstable n = 1 3 RWM observed
- **\Box** RWM critical rotation is a profile; depends on q, A, v_i
- □ Rotation + ω^* effects may provide 1/1 mode saturation □ Stability vs. shape, P(r), I_i studied

(Sabbagh, PRL 97 (2006) 045004)

(Zhu, PRL 96 (2006) 225002)

(Menard, IAEA FEC 2006 OV/2-4)

(Sabbagh, NF 46 (2006) 635)

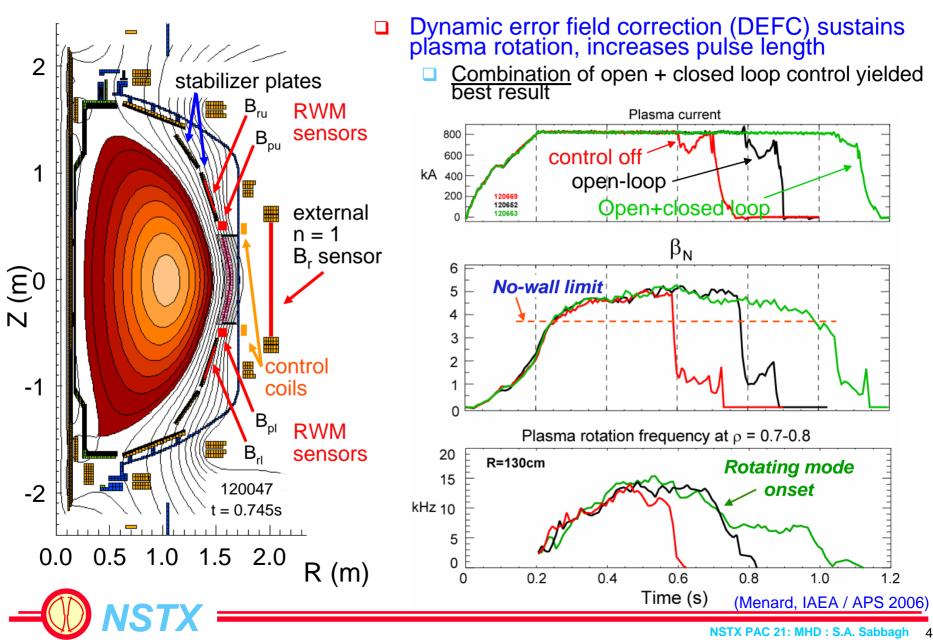
(Sontag, IAEA FEC 2006 EX/7-2Rb) (Reimerdes, PoP **13** (2006) 056107) (Sontag, PoP **12** (2005) 056112)

(Menard, NF 45 (2005) 539)

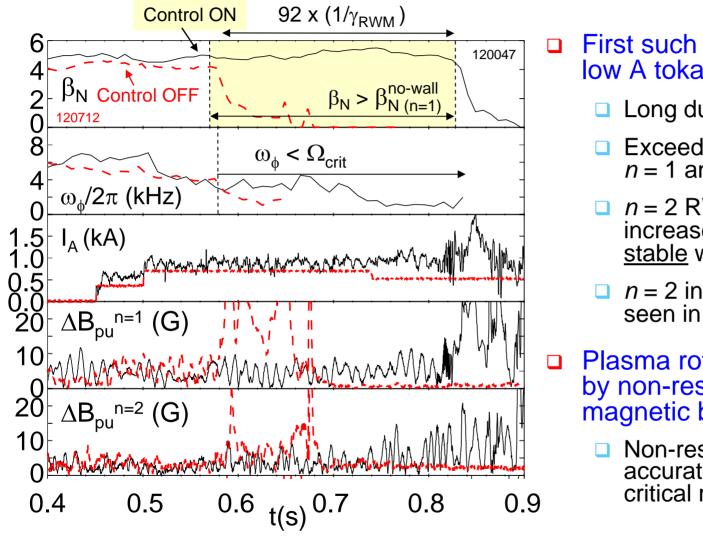
(Sabbagh, NF 46 (2006) 635)

(Gates, PoP **13** (2006) 056122) (Sabbagh, NF **44** (2004) 560; Menard, PoP 11 (2004) 639)

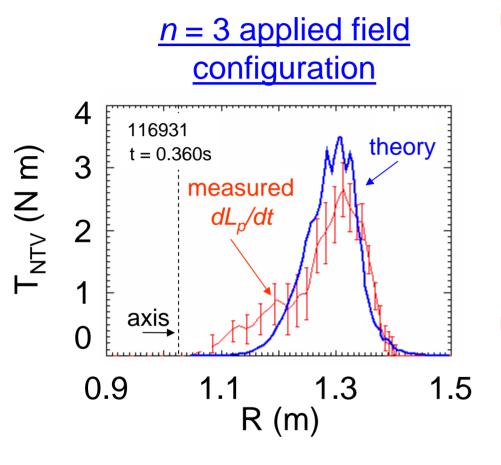
 \Box V_{ϕ} , flux-isotherm, MSE in equilibrium reconstructions


Emphasis on 2007 Milestone; preparing for 2009 Milestone

R(07-2): "Characterize effectiveness of closed-loop RWM control & dependence on rotation using ITER-like control coils."


R(09-2): "Understand physics of RWM stabilization and control as a function of plasma rotation."

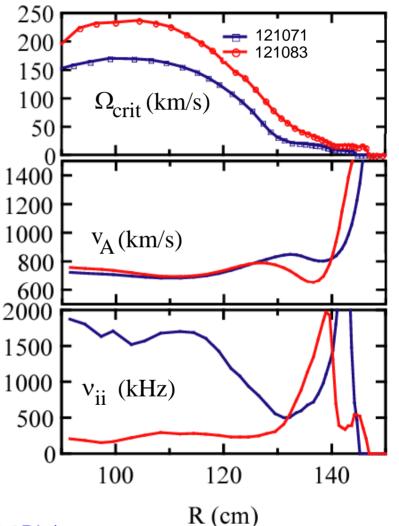
RWM active control system, rotation control installed


RWM actively stabilized at low, ITER-relevant rotation

- First such demonstration in low A tokamak
 - □ Long duration > $90/\gamma_{RWM}$
 - Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
 - n = 2 RWM amplitude increases, mode <u>remains</u> <u>stable</u> while n = 1 stabilized
 - n = 2 internal plasma mode seen in some cases
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Non-resonant braking to accurately determine RWM critical rotation, Ω_{crit}

(Sabbagh, et al., PRL 97 (2006) 04500. ; APS 2006 Invited; IAEA 2006 Post-deadline)

Observed rotation decrease follows NTV theory


(Zhu, et al., PRL 96 (2006) 225002.)

- First quantitative agreement using full neoclassical toroidal viscosity theory (NTV)
 - Due to plasma flow through non-axisymmetric field
 - Computed using experimental equilibria
 - Trapped particle effects, 3-D field spectrum important
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF)
 - Scales as $\delta B^2(p/v_i)(1/A)^{1.5}$
 - Low collisionality, v_i, ITER plasmas expected to have higher rotation damping

Increased Ion Collisionality Leads to Decreased Ω_{crit}

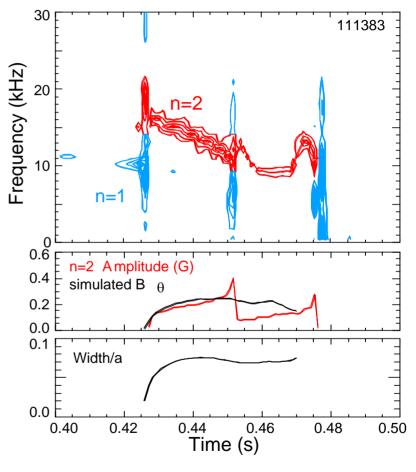
- **D** Plasmas with similar v_A
- Consistent with neoclassical viscous dissipation model
 - at low γ, increased ν_i leads to lower
 Ω_{crit}
 (K. C. Shaing, Phys. Plasmas 11 (2004) 5525.)
- ITER plasmas with lower v_i may require higher degree of RWM active stabilization

Further analysis and 2007 XPs aim to uncover RWM stabilization physics (FY09 Milestone)

(Sontag, et al., IAEA FEC 2006 paper EX/7-2Rb.)

Low A, high β favorable for NTM seeding / stabilization study

Several modes (e.g. sawteeth*, RWMs**) seed low frequency MHD modes in NSTX


- Can led to soft beta limit, or plasma rotation reduction resulting in disruption
- Large q = 1 radius, high β, mode coupling at low-A makes seeding process easier
- INTM stabilization effects amplified at low-A (GGJ ∝ ε^{3/2}) − NTM less deleterious

NTM study planned 2007 - 2009

- Characterize modes: are these NTMs, TMs, or internal kinks?
- Exploit 12 channel MSE, reflectometer, fast multi-filter USXR capabilities
- Mitigate deleterious effects of modes

*Fredrickson, et al., Bull. Am. Phys. Soc. 2004 **Sabbagh, et al., NF **44** (2004) 560.

Sawtooth excitation of n = 2

Sawtooth excites n = 2, but n = 2 can decrease post-crash

Selected 2007 Experiments Address Near-Term Research Plan

M	HD ETG Prioritized Experiments (from NSTX Forum – Dec 2006)	5 de	vel.	toroidal ics
C	Assessment of intrinsic error fields after TF centering	X	X	
C	RFA detection optimization during dynamic EF correction	Х		X
C	RWM active stabilization and optimization – ITER scenario	Х	X	X
	Assessment of RWM mode stiffness	Х		X
	n = 3 magnetic braking w/ optimal n = 1 error field correction		X	X
5 🕻	Fast Soft X-ray Camera (FSXIC) Imaging of MHD	Х		X
days 🕻	Exploration of stability limits at high I _N with strong shaping	Х		X
C	B and q scaling of low-density locked-mode threshold at low-A	Х	x	Х
	Measurements of plasma boundary response to applied 3D field			x
C	RWM suppression physics at low aspect ratio	Х	X	X
	• RWM D3D+ joint experiment – ε, β, $V_{\phi}(\psi)$ effects on $\Omega_{crit}(\psi)$		X	x
C	NTV dissipation physics: $n = 2$ perturbations and v_i	Х	X	X
	Toroidal flow damping by island-induced NTV	Х	X	x
10 🕻	Marginal island width of NTMs in NSTX	Х	X	Х
days 🕻	NTM threshold at low plasma rotation	X_	_X	x

(Red highlight = addresses NSTX milestone)

(PAC charge question #1 criteria)

MHD Research 2007+ logically follows past results (I)

RWM control

PAC request

- Reduced latency feedback; also artificially increase (ITER support)
- Added feedback sensors; examine/eliminate mode deformation
- Test optimized control techniques offline '07, implement '09

Plasma rotation

- Resonant damping, islands, damping mitigation for steady-state ops
- **u** Further evaluation of NTV physics causing v_{ϕ} damping (ITER, etc.)
- Density control (ion collisionality) to support physics study

RWM stabilization physics

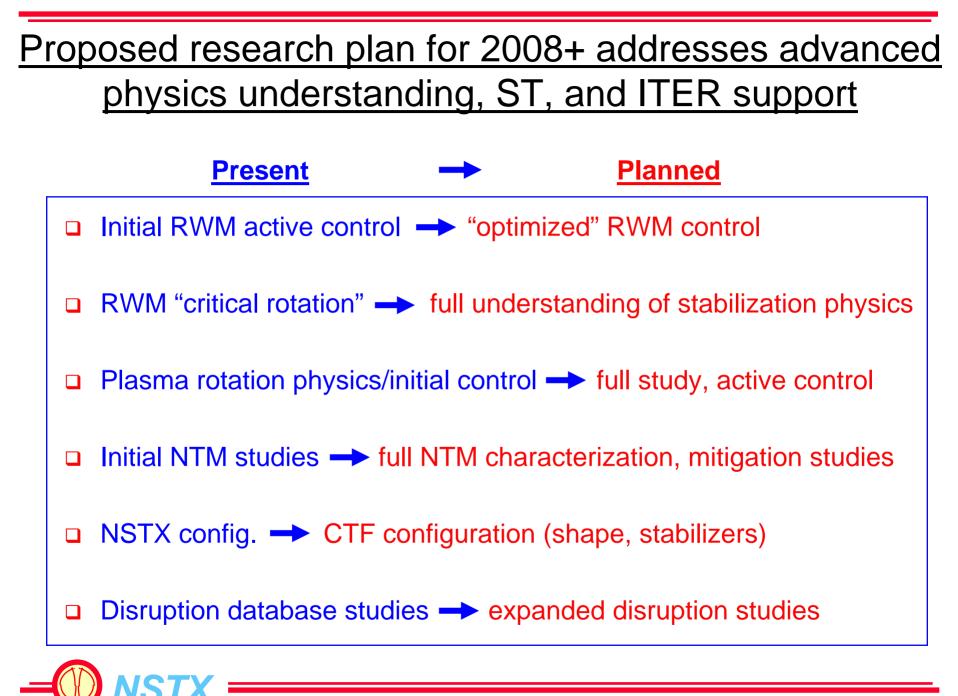
- **D** Present study shows Ω_{crit} is profile, decreases with increasing v_i
- Determine underlying physics of RWM stabilization ('09 milestone)
- Rotation/profile, v_i, RWM active control beneficial (required) tools for study

MHD Research 2007+ logically follows past results (II)

PAC request

- Characterization of mode as NTM (vs. kink, or classical tearing)
- Improved diagnostics for mode determination / stability analysis
 - MSE (in plan), multi-filter SXR, fast scanning profile reflectometer
- \Box leverage low A to determine ε dependence of mode stability
- Utilize non-resonant magnetic braking for studies at low rotation

Shaping / configuration


- Self-consistent current profile (β dependent) for steady-state ops
 - real-time β feedback; expanded MSE for stability studies
- High $\kappa \sim 3$ studies for CTF, passive plate coupling, RWM feedback

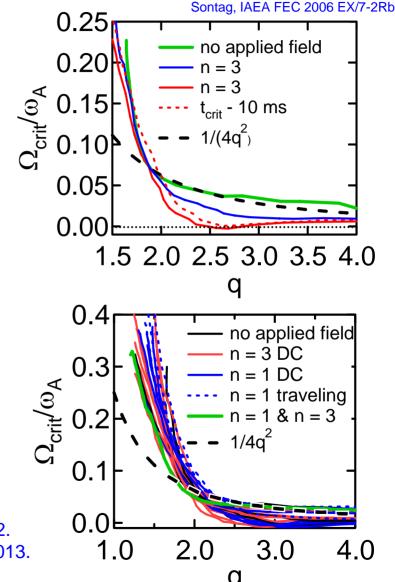
Disruptions

Continue low density locked mode scaling study (ITER support)

Halo current evaluation (w/ new Rogowski coils) useful for ITER, CTF

PAC request

Additional slides



Rotation profile shape important for RWM stability

- Benchmark profile for stabilization is $\omega_c = \omega_A/4q^{2*}$
 - predicted by Bondeson-Chu semikinetic theory**
- High rotation outside q = 2.5 not required for stability
- □ Scalar Ω_{crit} / ω_A at q = 2, > 2 not a reliable criterion for stability
 - consistent with distributed dissipation mechanism

*A.C. Sontag, et al., Phys. Plasmas **12** (2005) 056112. **A. Bondeson, M.S. Chu, Phys. Plasmas **3** (1996) 3013.

NSTX PAC 21: MHD : S.A. Sabbagh 14