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NSTX is uniquely positioned to study energetic 
particle physics required for next-step devices

• For next step, need to have predictive capability for:
– Fast ion confinement; impact on ignition conditions
– Fast ion redistribution; model beam driven currents for next-step ST's

and ITER.
– Fast ion losses; model PFC heat loading.

• NSTX routinely operates with super-Alfvénic fast ions.
– Neutral beam energy at 60 - 100 kV, 1 < Vfast/VAlfvén < 5
– Neutral beam power up to 6 MW, βfast(0)/βth(0) ≤ 0.8

• Fast ion parameters relevant to ITER/NHTX/ST-CTF

– Fast ion losses have been correlated with both TAE and EPMs.
– Losses typically largest when multiple modes interact; predicted loss 

mechanism for ITER.



NSTX accesses broad range of fast ion 
parameters, broad range of fast particle modes

• Cartoon at right illustrates NSTX 
operational space, as well as 
projected operational regimes for 
ITER, ST-CTF and ARIES-ST.

• Also shown are parameters where 
typical fast particle modes (FPMs) 
have been studied.

• Conventional beam heated 
tokamaks typically operate with 
Vfast/VAlfven < 1.

• CTF in avalanche regime motivates 
studies of fast ion redistribution.

• Higher ρ* of NSTX compensated by 
higher beam beta
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Cartoon is over-simplification and there 
are other dependences.



Comprehensive and growing diagnostic set 

• Diagnostics to measure mode structure:
– High frequency Mirnov arrays; 10 MHz bandwidth
– Multi-channel reflectometer array; internal mode structure/amplitude
– Multiple view soft x-ray cameras ( 100 kHz bandwidth)
– High-k scattering; Kinetic Alfvén Waves
– Firetip 2MHz; internal mode amplitude/structure
– CIF/LIF MSE; internal mode amplitude/structure in δB, total pressure profile
– BES; higher spatial resolution, mode structure at higher/lower density

• Fast particle diagnostics:
– Fast neutron rate monitors
– Scanning NPA; high energy resolution, vertical and radial scan
– ssNPA; 5-channel compact NPA radial array
– sFLIP; scintillator lost ion probe, energy/pitch angle resolved, high time resolution(PMT)
– iFLIP; Faraday cup lost ion probes
– FIDA; spatial profile, energy resolved
– Neutron collimator; spatial profiles of fastest ion populations
– Improved internal magnetic fluctuation diagnostic

Pre-2008
2008-2010
2011+
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Experimental program strongly coupled to 
EP theory & modeling community

• Strong analytic and numerical modeling support
– Strong connection between PPPL and UT theory groups
– TRANSP; equilibrium and classical fast ion distributions
– NOVA-k; linear mode structure/stability
– ORBIT; fast ion redistribution - linear mode structure
– M3D-k; linear/non-linear mode stability structure and evolution

• M3D upgrade (GKM) will provide full FLR effects, .e.g., coupling to KAW.
– HINST; local, fully kinetic, stability modeling
– HYM; non-linear shear and compressional Alfvén waves

• NSTX experiments address energetic particle physics issues 
important for developing predictive capability.
– Non-linear, multi-mode transport (ITER/NHTX/ST-CTF)
– Coupling to KAW at continuum (ITER/NHTX/ST-CTF)
– Rotational shear effects on mode stability/structure (NHTX, ST-CTF)
– Direct measurement of adiabatic index (ratio of specific heats)
– Phase-space engineering; HHFW modification of fast ion profile 5



PAC21 recommendations guide run planning

PAC21-07 The proposed use of non-resonant braking to separate the effect of 
rotation would be interesting for more detailed study of Alfvén cascade modes.

Part of proposed experiments, "2nd priority".
PAC21-08 NSTX is uniquely positioned to effectively study the detrimental effects of 
nonlinear Alfvén eigenmode coupling on energetic particle confinement. … This set of 
experiments should be a high priority

Multi-mode transport in avalanches/EPM are highest priority experiments.
PAC21-09 Simulation code validation (e.g., M3D-k) … is an important activity…

124781 is basis of M3D-k simulation; validation of linear NOVA/HYM AE structure 
PAC21-10a Use of variable rotation speed to characterize AC modes and BAAE is a 
valuable study.

Some initial studies in 2007; needs more analysis.
• PAC21-10b Fishbone physics in context of shaping/high β which can modify/reverse 

fast ion precession velocity (important for resonant drive of fishbones)
Experiment planned to document fast ion transport, q(0), β, "2nd priority".

• PAC21-40 Phase-space engineering for energetic ions … important topic for ST 
physics, ITER and general tokamak science.

Experiment to document Angelfish, study suppression with HHFW "2nd priority".

– Each experimental goal pursued over multiple years 6



Fast ion losses seen with TAE Avalanches, 
EPMs, of most concern for ITER, ST-CTF

• TAE avalanches identified on NSTX

• Threshold in βfast identified for one 
operating condition.
– ST-CTF in avalanche parameter regime
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PAC21-08, 10b
• Fast ion losses correlated with multi-mode period 

of Energetic Particle Mode (EPM).
• Not classic fishbones; multiple, independent 

modes, potentially an issue for NHTX or ST-CTF.
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NOVA simulation of mode structure compared 
with reflectometer array measurements

PAC21-08

• NOVA is a linear code, mode structure is 
scaled to measured amplitude for use in 
ORBIT code.
– Comparison of modeled eigenmode is 

through "synthetic reflectometer
diagnostic"

• Similar analysis is done for each of the 
detected modes.

• ORBIT can be used to simulate fast ion 
redistributions.

• Parallel effort to model full, non-linear 
TAE avalanche with M3D-k (GKM) code.



Documentation of fast ion transport highest 
priority goal for EP group

• Fast ion redistribution indicated by 
neutron drops and in ssNPA and NPA 
data.

• Lower energy ions (still resonant) seem 
most strongly affected.
– Additional experiments needed for 

quantitative measurements, identification 
of fast ions involved.

• No lost fast ions seen on sFLIP detector; 
– However, bursts of Hα light are 

correlated with avalanches,
– fast ions lost to another part of machine

9

PAC21-08
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• 2008-2009
– Effect on NBI current will be investigated during TAE avalanches with:

• FIDA, vertically scanned NPA, ssNPA, neutron and sFLIP diagnostics.
– Scaling of Avalanche onset threshold with Vfast/VAlfvén, and q-profile variations.
– EPM effect on fast ions, measure internal mode structure
– EPM scaling studies with q(0) and β scaling, precession drift reversal
– Milestone to complete study of J(r) modification by super-Alfvénic ion driven modes
– BAAE high-k scattering radial scan, mode structure (using BES)
– Alfvén Cascade (AC) fast ion redistribution, scaling of Cs(βfast, βe, βi), ωGAM(β')
– Documentation of Angelfish, HHFW suppression study.

• 2010 (this research not possible without NSTX operation in FY10)
– Avalanche studies in low density H-modes w/BES for internal structure

– EPM scaling studies with q(0) and β scaling, study precession drift reversal

• 2011 - 2013
– TAE avalanches, EPM fast ion redistribution in high density H-modes; neutron collimator.
– BAAE fast ion redistribution, stability boundary studies
– Alfvén cascade mode structure in low density plasmas, rsAE ñ TAE coupling
– How much or what type of RF needed to suppress fishbones? TAE avalanches?
– HHFW power scan for Angelfish suppression threshold

Predictive capability for fast ion transport 
highest priority goal for 2008-2010

Highest priority

2nd priority

3rd priority



Fast ion losses expected from other instabilities

• Losses during n = 3 frequency sweep seen on 
sFLIP diagnostic.

• NSTX rsAE studies will address mystery of fast 
ion redistribution on DIII-D.
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PAC21-07,10

• β-induced Alfvén-Acoustic modes could 
explain some low-frequency fast particle 
modes on NSTX, e.g., EPMs.

• Coupling to Kinetic Alfvén Waves detected 
with High-k scattering diagnostic.
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Studies of Alfvén Cascades/BAAE are 2nd

priority in near-term and extended run-plans

• 2008-2009
– Effect on NBI current will be investigated during TAE avalanches with:

• FIDA, vertically scanned NPA, ssNPA, neutron and sFLIP diagnostics.
– Scaling of Avalanche onset threshold with Vfast/VAlfvén, and q-profile variations.
– EPM effect on fast ions, measure internal mode structure
– EPM scaling studies with q(0) and β scaling, precession drift reversal
– Milestone to complete study of J(r) modification by super-Alfvénic ion driven modes

– BAAE high-k scattering radial scan, mode structure (using BES)
– Alfvén Cascade (AC) fast ion redistribution, scaling of Cs(βfast, βe, βi), ωGAM(β')
– Documentation of Angelfish, HHFW suppression study.

• 2010
– Avalanche studies in low density H-modes w/BES for internal structure

– EPM scaling studies with q(0) and β scaling, study precession drift reversal

• 2011 - 2013
– TAE avalanches, EPM fast ion redistribution in high density H-modes; neutron collimator.

– BAAE fast ion redistribution, stability boundary studies
– Alfvén cascade mode structure in low density plasmas, rsAE ñ TAE coupling
– How much or what type of RF needed to suppress fishbones? TAE avalanches?
– HHFW power scan for Angelfish suppression threshold

Highest priority

2nd priority

3rd priority



*AE are diagnostics of fast ions and plasma: 
qmin, adiabatic index (γ), fast ion diffusivity

• Cascade Modes (rsAE) identified on NSTX
– Confirmation of MSE measured qmin
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PAC21-07,10

• Frequency minima equal GAM frequency
– Diagnostic of adiabatic index; particularly 

important to measure for fast ions. 
• Non-resonant braking used to study effect of 

rotational shear on frequency minima.

• Frequency sweeps 
suppressed at high β
– Experiments done at 

very low β, density



Studies of Angelfish (hole-clumps) illuminate 
physics of fast ion phase space structures

• Efforts have continued to develop theoretical 
and experimental understanding of CAE/GAE 
hole-clumps.
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PAC21-40
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• Suppression power threshold in qualitative 
agreement with predictions

• Understanding phase-space structures could 
lead to methods of TAE control

• Linear growth rate 
in good agreement 
with analytical 
estimates



2011-2013 research focused on avalanches in high 
density H-modes and fundamental *AE physics

• 2008-2009
– Effect on NBI current will be investigated during TAE avalanches with:

• FIDA, vertically scanned NPA, ssNPA, neutron and sFLIP diagnostics.
– Scaling of Avalanche onset threshold with Vfast/VAlfvén, and q-profile variations.
– EPM effect on fast ions, measure internal mode structure
– EPM scaling studies with q(0) and β scaling, precession drift reversal
– Milestone to complete study of J(r) modification by super-Alfvénic ion driven modes
– BAAE high-k scattering radial scan, mode structure (using BES)

– Alfvén Cascade (AC) fast ion redistribution, scaling of Cs(βfast, βe, βi), ωGAM(β')
– Documentation of Angelfish, HHFW suppression threshold study.

• 2010
– Avalanche studies in low density H-modes w/BES for internal structure

– EPM scaling studies with q(0) and β scaling, study precession drift reversal

• 2011 - 2013
– TAE avalanches, EPM fast ion redistribution in high density H-modes; neutron collimator.
– BAAE fast ion redistribution, stability boundary studies

– Alfvén cascade mode structure in low density plasmas, rsAE ñ TAE coupling
– How much or what type of RF needed to suppress fishbones? TAE avalanches?
– HHFW power scan for Angelfish suppression threshold
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Highest priority

2nd priority

3rd priority



NSTX is uniquely positioned to develop a predictive 
capability for fast-ion transport for next-step STs

• Understanding fast ion redistribution effects on NB current could guide 
design of next step experiments, NHTX, ST-CTF or ITER.
– 3 year program would extend redistribution studies into H-mode regime with 

addition of BES diagnostic.
• Probability of success in a 3 year program would be greatly improved 

with extended run time.
– NSTX has substantial diagnostic capabilities which could be exploited over 

the next 3 year period.
• A two year program (2008-2009) would limit fully diagnosed plasmas, 

which form the basis of modeling efforts, to L-mode plasmas
– Internal measurements of mode structure in H-mode, or higher density, 

plasmas with BES will not be available until 2010.
– All benchmarking of codes would thus be done on L-mode plasmas.

• Runtime beyond 2010 would provide time for experiments addressing 
avalanches in high-ne H-modes, and fundamental fast ion physics issues.
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Energetic Particle Physics research time line

|    FY08    |    FY09 |    FY10     |    FY11    |    FY12    |    FY13    |

Onset scaling, EP transport, onset 
in H-mode

Onset scaling in H-mode, Chirp 
suppression with HHFW

Avalanche
(multimode)

Onset threshold, GAM frequency 
scaling, fast ion transport

Mode structure studies in L-mode 
and H-mode, fast ion transportCascades

Fast ion loss, q(0) scaling, β scaling, 
soft x-ray mode structure 

q(0) scaling, β scaling, Mode 
structure (BES, MSE-LIF/CIF)Fishbones

High-k scattering, mode structure Stability scaling, rotational shear, 
fast ion transportBAAE

Phase-space structures, chirp 
suppression

Chirp suppression, phase-space 
structuresCAE/GAE

Diagnostics
FIDA, high-k, 
Firetip 2MHz, 

MSE-CIF
MSE-LIF BES Neutron 

collimator
17

milestone
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