

Scenario Integration and Control Progress and Plans

Colorado Sch Mines Columbia U Comp-X FILI **General Atomics** INI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

College W&M

J. Menard and D. Gates For the NSTX Research Team

NSTX PAC-23 Meeting LSB B318, PPPL January 22-24, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching **IPP AS CR** U Quebec

This presentation (with others) addresses all PAC-21 recommendations for scenario integration research

- PAC21-31
 - Have close coupling between ELM control and stability & boundary research
 - Initiated cross-group effort to develop and execute RMP experiments for ITER design support
- PAC21-32
 - Consider increasing emphasis of development of techniques for off-axis CD

 Proposed 2nd NBI with large R_{TAN} during FY2010-11 outage to provide off-axis CD
 - 2. Give higher priority to obtaining higher central safety factor in start-up phase Developed high- κ start-up to access higher q_{min} discharges in 2007
 - 3. Analyze risks & benefits of LLD for development of steady state scenarios
 - Describe potential LLD benefits in this presentation see also Boundary and LLD presentations
- PAC21-33
 - Complement DIII-D work on RMP ELM suppression for ITER physics basis
 - See response to PAC21-31 above
- PAC21-34
 - Develop and articulate a plan to systematically integrate higher β_N , T_e , etc...
 - This presentation will articulate a plan to integrate key elements of full-NICD scenarios
- PAC21-35
 - Give attention to understanding the redistribution of beam ions by MHD
 - Have milestone on redistribution physics in FY09, obtained detailed *AE avalanche results in 2007
 - Consider compatibility of highly shaped plasmas w/ tolerable divertor heat-flux
 - Boundary physics + overview presentations discuss flux expansion, radiative divertor results

Primary purpose of this presentation is to articulate a plan to integrate various program elements into advanced scenario(s)

OUTLINE

- Scenario integration goals
- Review of integrated modeling results
- Approaches to achieving these goals
- Supporting experimental results from 2007
- Role of 2nd NBI in long-term integration goals
- Control system status and plans
- Summary and timelines

Goal of NSTX integrated scenario research is to close the gap between present performance and next-step STs

🔘 NSTX

GOALS: reduce density, increase NBICD, increase thermal confinement

	Present high-f _{NICD}	NSTX	NHTX	ST-CTF				
	Α	1.53	1.8	1.5				
	κ	2.6-2.7	2.8	3.1				
	β _T	14%	12-16%	18-28%				
	β _N [%-mT/MA]	5.7	4.5-5	4-6				
	f _{NICD}	0.65	1.0	1.0				
	f _{BS}	0.54	0.65-0.75	0.45-0.5				
	f _{NBICD}	0.11	0.25-0.35	0.5-0.55				
	f _{GW}	0.8-1.0	0.4-0.5	0.3-0.5				
1	H _{98y2}	1.1	1.3	1.5				
	Dimensional/Device Parameters:							
	Solenoid Capability	Ramp-up + flat-top	Ramp-up to full I _P	No/partial ramp-up				
	I _P [MA]	0.72	3-3.5	8-10				
	Β _T [T]	0.52	2.0	2.5				
	R ₀ [m]	0.86	1.0	1.2				
	a [m]	0.56	0.55	0.8				
	I _P /aB _{T0} [MA/mT]	2.5	2.7-3.2	4-5				

Integrated modeling has identified two approaches to increase non-inductive current fraction that will be tested in NSTX

Plan for developing low density, high-NBICD scenario

High β_N , high-f_{BS} scenario requires increased confinement, strong shaping, and elevated *q* to increase ideal-wall limit

🔘 NSTX

- $T_{e,i}$ increase 50,70%, $n_e \downarrow 25\%$, H_{98} = 1.1 \rightarrow 1.35-1.45
 - Increases f_{BS} & NBICD consistent w/ desired q(r)
 Use LLD for lower n_e & higher H₉₈, use HHFW for higher T

• Will optimize q_0 , q_{min} (1.4 – 2.4) to maximize f_{NICD} – $q_{min} \approx 1.4$ with-wall β_N limit ≈ 6 , need 6.6 for f_{NICD} =100% – $q_{min} \approx 2.4$ with-wall $\beta_N \approx 7.2$, but significant bad-orbit loss • HHFW and/or very high H₉₈ needed for high β_N

NSTX PAC-23 – SI&C – Menard/Gates

- Higher κ for higher q, β_P , f_{BS}
- \bullet High δ for improved kink stability

Goals & status of high β_N , high-f_{BS} scenario development

- Goal 1: Achieve elevated q(r) profile target is $q_{min} = 2.4$
 - Accessed elevated q with modified breakdown and ramp-up (2007)
 - Based on stability calculations, core shear reversal likely too strong
 - → Future: Vary current ramp and heating timing to flatten core shear
- Goal 2: Achieve & control LSN boundary with high κ and δ Achieved with rt-EFIT (2007)
- Goal 3: Access high β_N , β_P , f_{BS} with elevated q(r)
 - No evidence of disruptive MHD during push to high β_{P}
 - Did not achieve target $\beta_N > 6.5$ (insufficient heating and/or confinement)
 - − Very low $I_i = 0.4-0.5$ & low $I_P = 700$ kA → 30% bad orbit loss (TRANSP)
 - − Saturated n=1 TM activity when q_{min} =1.6-1.8 limits $β_P$ → want q_{min} > 2
 - \rightarrow Future:Test lower voltage on highest-loss NBI source (or turn off)Test ability of HHFW to increase electron stored energyPAC21-34Test ability of Li (LITER/LLD) to increase confinement

= (0) NSTX

High- κ breakdown scenario + LITER (15-20mg/min) successfully elevated safety factor *q* early in discharge

- In first 300ms, high $q_{min} > 3$, $I_i = 0.45$, $\kappa = 2.6-2.7$
 - Previous long-pulse shots (116313) had $q_{min} \rightarrow 2$ by t=0.2s

PAC21-32-2

NSTX

rt-EFIT isoflux control algorithm achieves and maintains shape very close to desired target shape

- In 2006 achieved world record plasma elongation
 κ = 3
- In 2007 maintained $\kappa = 2.7$
- High κ in flat-top combined with high-q startup results in elevated q_{min} and low *l_i*~0.4

Elevated q_{min} experiments indicate core magnetic shear is important parameter influencing β -limiting MHD activity

- β -limiting mode frequency matches rotation at q=2 surface \rightarrow 2/1 NTM or DTM
- Mode absent for monotonic shear \rightarrow RS q-profile may destabilize mode

Reversed-shear discharge limited to $\beta_P < 1.5$ by this core *n*=1 MHD \rightarrow Test HHFW heating & current drive in ramp-up and flat-top for elevating $q_{min} > 2$

ISTX

Tools for further developing fully non-inductive scenarios

= 🔘 NSTX

Plans for developing high β_N , high-f_{BS} scenario

• 2008

PAC21-34

- Assess confinement, ELM, thermal profile modifications from dual-LITER
- Develop HHFW in deuterium H-modes for advanced scenario applications
- Incorporate n=1 RWM/RFA and n=3 EFC control into scenarios
- 2009-10 GOAL: increase f_{NICD} = 65-70% \rightarrow 80-90% for $\tau \sim \tau_{\text{CR}}$
 - Assess confinement, ELM, thermal profile modifications from LLD-I and LLD-II
 - Increase NBICD using lower n_e , higher/broader T_e from LLD
 - Use higher-power HHFW with ELM resilience to increase $W_{e},\,f_{BS},\,and\,f_{NICD}$
 - Perform high-elongation wall-stabilized plasma operation FY09 milestone
 - Conditions: κ up to 2.8, $\tau \ge \tau_{CR}$, low-n_e for high NBICD fraction, high β_N for high f_{BS}
 - Integrate ELM reduction techniques into scenarios (Mid-plane coil RMP, Lithium)
 - Utilize NBI β-feedback to controllably operate near ideal-wall limit
- With only 2 years (FY08-09), cannot fully assess HHFW and LLD for improving advanced scenarios
- 2011-13 GOAL: increase $f_{NICD} \rightarrow 100\%$ with J profile control for $\tau \gg \tau_{CR}$ – Long pulse (2s $\Leftrightarrow 4\tau_{CR}$) at full B_T =5.5kG w/ sub-cooled TF/OH, long-pulse LLD – HHFW q(0) control, full-NICD + J(r) control w/ 2nd NBI, off-midplane RMP coils

2nd NBI (FY11-13) would enable full non-inductive current drive w/ only small extrapolation from present NSTX performance

 \bigcirc NSTX

PAC21-32-1

$$_{P} = 725 kA, B_{T} = 0.55T, \beta_{N} = 6.2, \beta_{T} = 14\%$$

 $H_{98y2} = 1.2, f_{NICD} = 100\%, f_{\nabla p} = 73\%$

- Combination of available sources can control q_{MIN} and core q-shear
 - At H_{98y2} =1.2, J control with q_{MIN} > 1.2 requires operation with f_{GW} > 0.9

- Magnetic shear control could be important tool for controlling core confinement and MHD stability
 - Core transport reduced in RS L-mode

- Improved vertical position control (2004)
 - Elongation key to achieving steady state with high fbs
- Improved plasma shape control has yielded important benefits for NSTX operations (2005)
 - Improved stability
 - Improved HHFW coupling
- Non-axisymmetric control has led to several important new areas of research for NSTX (2006)
 - Error field control, RWM feedback
 - Non-resonant magnetic braking, neoclassical toroidal viscosity
- Recent computer hardware upgrades (2008) will enable new control areas
- Future:
 - Neutral beam control/β-feedback (2009), density control using SGI (2010)
 - Rotation control (beams + braking) (2010/11)
 - Advanced RWM control, real-time MSE (2011), HHFW q(0) control (2011-12)
 - Current profile control with additional NBI (incremental 2011-12)

Control science on NSTX is a growing collaborative research field

🛈 NSTX

- Plasma control system (PCS) has been developed at PPPL in collaboration with GA
 - This successful collaboration has led to GA exporting the PCS to MAST, KSTAR, EAST
 - Incorporated vessel eddy currents into rt-EFIT for NSTX
 - Collaborated with GA on EAST control system and operation
- RWM control developed in collaboration w/ Columbia Univ.
 - Optimized RWM control development in progress
- New collaborations underway with LeHigh University and Princeton University
 - NSF CAREER Award for Prof. E. Schuster at Lehigh supports graduate student on NSTX - Optimized shape control development.
 - Proposal to develop optimized rotation control
 - New post-doc working on optimized vertical control on NSTX from Princeton University.
 - Proposal to develop optimized current profile control

Development of scenarios that integrate high non-inductive fraction w/ high confinement & stability crucial for next-step STs

- 2008-10 **Goal:** Reduce uncertainty in extrapolation to next-steps by achieving 80-90% NICD fraction for $\tau \sim \tau_{CR}$
 - LITER/LLD to reduce n_e and test NBICD redistribution physics
 - Characterize long-pulse τ_{E} and core and edge stability vs. n_{e} & ν^{*}
 - Use higher-power HHFW w/ ELM resilience to increase $\rm f_{BS}$ and $\rm f_{NICD}$
 - Characterize high-elongation wall-stabilized plasma operation
- With only FY08-09, cannot realistically assess impact of LLD, NBICD redistribution, or HHFW for advanced scenarios
- 2011-13 **Goal:** Significantly reduce uncertainty in extrapolating to nextsteps by demonstrating 100% NICD for $\tau \gg \tau_{CR}$ with J(r) control
 - Long pulse (3-4 τ_{CR}) at full B_T=5.5kG (sub-cooling), long-pulse LLD
 - Full-NICD + J(r) control w/ 2nd NBI, HHFW q(0) control, ELM control
 - Develop methods of controlling mode-induced NBICD redistribution

🛑 🔘 NSTX

Integrated Scenario Research Timeline – FY08-13 (base)

FY07	08	09	10	11	12	13	, 1	4
Physics	Understand, i Assess J _N Assess H ₉₈ , Increase Maximize (Cont to opera	increase, contr $_{BICD}$ & redistrib $_{BICD}$ & redistribution $_{BICD}$ & redistribution $_{$	rol Li pumping ution vs. n _e n _e & Lithium ith HHFW q and dq/dr M, EF wall limit RMP, Lithium	Long-pulse r Develop c Assess lor Develop c	n _e control (pump ontrol of J _{NBI} red ng-pulse H ₉₈ , ELM q(0) control with	ing & fueling) listribution //s, β _N vs. n _e		Extended duration approaching full NICD: $I_P \approx 0.7MA$ $f_{GW} = 0.3-1$ $f_{NBICD} = 25-50\%$ $H_{98y2} = 1.2-1.4$ $f_{NICD} = 90-100\%$ β_N up to 6.6 $\beta_T = 15-20\%$ $\tau_{flat} \sim 1-2\tau_{CR}$ No ELM
Tools	Dual LITER	Liquid Li D HHFW V _{ANT} , P _{RF} upgrade β control	ivertor (LLD) HHFW ELM resilience n _e control	Off-midplan real-time v _∳	Long-pulse div and core fue TF/OH sub-co e control coils v _e control	vertor ling oling		

rt - MSE

HHFW q(0)

control

NRI

Integrated Scenario Research Timeline – FY08-13 (+10%)

FY07	08	09	10	11	12	13	14
							Long-pulse
Physics	Understand	, increase, con	trol Li pumping	Long-pulse r	n _e control (pump	full NICD with J(r)	
-	Assess J _{NBICD} & redistribution vs. n _e			Control J	_{NBI} w/ multiple N d from redistribu	control:	
	Assess H_{98} , ELMs, β_N vs. n_e & Lithium Increase β_N , f_{BS} , f_{NICD} with HHFW		Assess long-pulse H ₉₈ , ELMs, β _N vs. n _e			$f_{\rm gW} = 0.3-1$	
			Develop	a(0) control with	$f_{\rm NBICD} = 25-50\%$ $H_{98y2} = 1.2-1.4$		
	Maximize	$\beta_{N}, f_{BS}, f_{NICD}$ vs	and dq/dr		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		∫ f _{NICD} ≤ 100%
	Cor to ope	ntrol β, n=0, R\ rate near idea	WM, EF I-wall limit		l control of		$\beta_{N} \text{ up to 7}$ $\beta_{T} = 15-25\%$
	ELM contro	ol w/ mid-plane	e RMP, Lithium	ELM/RWN	I/EF/rotation	J	$\tau_{flat} \leq \textbf{3-4}\tau_{CR}$ No ELM

