

Response to PAC-23 questions

College W&M **Colorado Sch Mines** Columbia U Comp-X FILI **General Atomics** INI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

J. Menard For the NSTX Research Team

NSTX PAC-23 Meeting LSB B318, PPPL January 22-24, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching **IPP AS CR U** Quebec

PAC question #1

a) Just as you have prioritized your "key" hardware upgrades (BES, LLD, HHFW), what are your "key" run-time/schedule priorities?

b) Also, what is the interrelationship between your run-time priorities and your "key upgrades"?

Short answers:

a) Gaps in performance/understanding motivate milestones, and milestones receive highest priority for run-time
b) Upgrades support the milestones
More extensive answers are given on subsequent pages Performance gaps between present and next-step STs motivate operational goals and associated milestones & upgrades

GOALS: reduce n_e, increase NBICD & H-mode confinement, demonstrate start-up/ramp-up

	Present high-f _{NICD}	NSTX	NHTX	ST-CTF
	Α	1.53	1.8	1.5
	κ	2.6-2.7	2.8	3.1
	β _T	14%	12-16%	18-28%
	β _N [%-mT/MA]	5.7	4.5-5	4-6
	f _{NICD}	0.65	1.0	1.0
	f _{BS}	0.54	0.65-0.75	0.45-0.5
	f _{NBICD}	0.11	0.25-0.35	0.5-0.55
	f _{GW}	0.8-1.0	0.4-0.5	0.25-0.5
	H _{98y2}	1.1	1.3	1.5
	Dimensional/Device Parameters:			
	Solenoid Capability	Ramp-up + flat-top	Ramp-up to full I _P	No/partial ramp-up
	I _P [MA]	0.72	3-3.5	8-10
	Β _τ [T]	0.52	2.0	2.5
	R ₀ [m]	0.86	1.0	1.2
	a [m]	0.56	0.55	0.8
	I _P /aB _{T0} [MA/mT]	2.5	2.7-3.2	4-5

Prioritization of performance/understanding gaps

- Priority #1 = Increase & understand beam-driven current

 NHTX/CTF require full NICD to achieve missions, and NBICD is largest gap
- Priority #2 = Increase & understand H-mode energy confinement
 - ST energy confinement in particular electron energy confinement not sufficiently well understood to make extrapolation to next-steps with high confidence (need to better understand underlying physics of scalings)
- Priority #3 = Sustained high β_N <u>and</u> non-inductive start-up & ramp-up (both topics are priority 3)
 - High plasma performance requires sustained β_{N} near & above no-wall limit
 - Somewhat more important for NHTX which also aims to test reliability of ops. near ideal-wall limit
 - Non-inductive ramp-up essential to ST-CTF, NI start-up also beneficial

• Key upgrades utilized for milestones are shown in (red) Note that all milestones below are "high priority", since milestones are allocated as much run-time as is needed (within reason) to achieve their goal FY2008 Milestones Evaluate generation rotation & momentum transport, impact of rotation on stability and confinement Joule Couple inductive ramp-up to CHI plasmas 1. Study variation and control of heat flux in SOL 3 Measure poloidal rotation at low A and compare with theory (poloidal CHERs) FY2009 Milestones Particle control and hydrogenic fuel retention in tokamaks (LLD) Assess non-inductive current drive sources vs. density at high β (LLD) (LLD, BES in FY10) Characterize fast-ion redistribution from AE avalanches Understand physics of RWM stabilization and control as a function of rotation FY2010 Milestones TBD – could be additional fast-ion milestone for AE ξ (r,t) in H-mode (BES) Joule 1. Study turbulence regimes responsible for ion and electron energy transport (BES) Assess pedestal characteristics and ELM stability as a function of v^* 2. (LLD) Characterize HHFW heating, CD, and I_P ramp-up in H-mode plasmas (HHFW) Assess stability & control of sustained operation near the ideal-wall limit (LLD. HHFW)

Run time/schedule priority will be given to milestones List below is prioritized based on relative importance of gaps

- 2.
- Joule
- 1.
- 2.
- 3.

5

"At the end of your 3 year campaign, what are the **NSTX performance and/or operational metrics** that will convince the fusion community that you understand ST physics well enough to justify continued research towards a next-step ST device?"

Answer:

See descriptions of performance gaps on next 4 pages, and "Associated performance and understanding metrics for NSTX" bullets for the metrics.

Performance gap #1: Sustained fraction of beam-driven current

- Next-step STs assume 25-50% of I_P will be driven by NBICD
 - Achieve this high fraction of NBICD by operating at low $n_e/n_{GW} = 0.3-0.5$
 - NBICD efficiency scales as $T_e / n_e \rightarrow 1/n_e^2$ at fixed $\beta \rightarrow$ favors low n_e
 - NSTX H-modes commonly evolve toward n_e / n_{GW} \rightarrow 0.7-1
 - NSTX NBICD fraction \approx 10-15% at high $\beta_N \sim$ 5 and $H_{98} \sim$ 1 as $n_e^{}/\,n_{GW}^{}$ \rightarrow 1
 - →NSTX goal is to double or triple sustained NBICD →NSTX needs 30-50% lower density for $f_{NBICD} \sim 30\%$ → need pump → LLD ← (50% density reduction would be necessary if T_e does not increase at reduced n_e)
- Also expect fast-ion transport from AE avalanches in ST-CTF
 - → Assess avalanches at next-step-relevant β_N , H_{98} , n_e/n_{GW} for $\tau \sim 1\tau_{CR}$
 - To extrapolate \rightarrow develop predictive capability for avalanches
 - →Need displacement diagnostic compatible with H-mode → BES ← Initial scoping indicates BES useful diagnostic for AE displacement profile ξ (r,t)
- Associated performance and understanding metrics for NSTX for FY08-10:
 - Drive 30% of I_P with NBI at next-step-relevant β_N , H₉₈, n_e/n_{GW} for $\Delta t \sim 1\tau_{CR}$
 - Assess NBICD scaling w/ $\rm n_{e},$ predictive capability for $\rm J_{NBI}$ including redistribution

Performance gap #2: Energy confinement in H-mode

- Next-step ST's assume H-mode confinement with $H_{98v2} = 1.3-1.5$
- On NSTX (and MAST) observe that electron confinement scales nearly linearly with B_T , while ion confinement scales nearly linearly with I_P
 - e-transport is presently dominant loss mechanism, i-transport often near neoclassical
 - These results and scalings differ from conventional aspect ratio
 - Also unclear if these low I_P , B_T scalings are valid at higher I_P , B_T of next-steps
 - → Complete scaling studies at next-step-relevant β_N , n_e/n_{GW} , v^* → LLD ←
 - \rightarrow Understand why scalings are the way they are
 - \rightarrow Measure wave-numbers responsible for i & e transport \rightarrow BES \leftarrow
 - \rightarrow Use data to determine which modes causing anomalous transport
 - → Determine how transport from measured modes extrapolates to next-steps
- Also need scaling & modeling of pedestal transport & stability vs. v^* , shape
- Associated performance and understanding metrics for NSTX for FY08-10:
 - Obtain H_{98y2} = 1.2-1.3 at next-step-relevant β_N , f_{BS} , f_{NICD} , n_e/n_{GW} for $\Delta t \sim 1\tau_{CR}$
 - Have strong theoretical basis that required level of confinement is achievable

Performance gap #3:

Sustained $\beta_N \ge \beta_{N-no-wall}$ at next-step-ST relevant conditions

- Next-step STs require stable & sustained operation near ideal no-wall limit

 Would greatly benefit from stable operation above no-wall limit, near ideal-wall limit
- One might assume that with all co-NBI, NHTX/CTF will have sufficient rotation to stabilize RWM, shield out error fields, help stabilize NTMs. But, there are concerns:
 - Even near no-wall limit, likely need active control of RFA, slowly growing RWMs
 - Can't predict what rotation profile (from first principles) will be in next-steps
 - Community still developing experimentally validated theory for RWM critical rotation
 - Collisionality apparently important for RWM critical rotation, next-steps will have lower ν^{\star}
 - NHTX/ST-CTF will potentially operate with q_{min} > 2. If low-order rational q surfaces are important in RWM rotation stabilization, critical rotation could increase...
 - Braking torques from mode/EF non-axisymmetric field (NTV) may scale as $1/v_i \rightarrow important$ for sustained/controlled plasma rotation/rotation profile in next-step STs

 \rightarrow Need to understand physics of RWM stabilization & control as function of rotation

- Generally assume that with $q_{min} > 2$, NTMs will not be problematic
 - Unclear if $q_{min} > 2$ with be optimal q profile for next-step integrated performance
 - NTMs can be triggered by ELMs, and via proximity to ideal-wall limit
 - NTM stability also depends on rotation and error fields

• Associated performance and understanding metrics for NSTX for FY08-10:

- Operate at β_N far above NW limit (C_β=0.5-0.9) at low n_e / n_{GW}, v^{*} for $\Delta t = 1-2\tau_{CR}$
- Have strong theoretical understanding of RWM Ω_{crit} & control, NTV, NTM stability

Performance gap #4: Non-inductive start-up+ramp-up for ST-CTF

- ST-CTF requires non-solenoidal I_P ramp-up to 8-10MA (NHTX has solenoid for ½ swing ramp-up to full I_P, and could also test start-up and ramp-up physics & technology for ST-CTF)
- ST-CTF could have small iron core for ~1MA (estimate) of start-up current
 - Could also use CHI, plasma guns, EBW, VF ramp, or combination for start-up
 - Assume NBICD+BS (and maybe LHCD or EBCD) used for ramp-up to full I_P
 - → Need to perform integrated time-dependent modeling to assess feasibility of this
- Already achieved 85% BS fraction during low-I_P (200-300kA) ramp-up experiments with HHFW during 2005-2006
 - Power limited by antenna voltage limits due to low loading at low (early) density
 - Transition to H-mode and ELMs cause HHFW power trips/faults
 - → Antenna upgrades + ELM resilience should enable first demonstration of BS current overdrive for ramp-up in an ST → HHFW ←
 - \rightarrow HHFW also useful for heating high- β_N , high- f_{BS} integrated scenario \rightarrow HHFW \leftarrow
- Associated performance and understanding goals for NSTX for FY08-10:
 - Decouple start-up and ramp-up problems experimentally, and demonstrate:
 - CHI start-up to $I_P \sim 300$ kA, HHFW BS+RF overdrive from 200kA ohmic target \rightarrow 400kA
 - Understand/model scaling of CHI start-up, HHFW (& NBI) ramp-up for next-steps

PAC question #3

ISTX

Plan for the NSTX HHFW program to 2010

- FY 08 Plan:
 - Extend L-mode coupling physics studies to Deuterium plasma; improve operations w/ NBI
 - Assess effect of Li, and optimize heating efficiency
 - Test -150°C CD phasing (pure spectrum)
 - Begin heating & CD studies in D H-mode plasmas and assess effect of Lithium
 - Finalize ELM resilience system requirement and design
 - Prepare and install double feed antenna system for FY 09 run
- FY 09 Plan:
 - Assess heating & CD operation with NBI in H-mode plasmas with double feed antenna
 - Optimize HHFW coupling into I_P ramp-up with double feed antenna
 - Test HHFW heating in CHI + OH plasmas
- FY 10 Goal: Characterize HHFW heating and current drive in H-mode plasmas
 - Optimize HHFW heating and CD with NBI H-mode using ELM resilience system
 - Test usefulness of HHFW heating at high- β_N , high- f_{BS} integrated scenario
 - Demonstrate BS current overdrive for ramp-up by HHFW in an ST for the first time
 - Understand/model HHFW ramp-up for next steps
 - Test HHFW heating in CHI + PF-only start up plasmas

Upgraded HHFW will enable assessments of ramp-up and flat-top electron heating in high-performance NBI H-mode scenarios

Double-feed antenna for higher P_{RF}, V_{RF} in FY09

Improved matching for ELM-resilience mid-FY10

Need higher RF power & ELM resilience to sustain BS overdrive for ramp-up

ISTX

Draft plan/ideas for the NSTX lithium program to 2010 (I)

🔘 NSTX

- FY08 Plan Characterize dual-LITER for n_e control & Li replenishment for LLD-I
 - Proposed experiments:
 - Characterize dual-LITER pumping vs. evap. rate & amount, assess effect on ELMs (FY09 prep)
 - Particle accounting with and without lithium (FY09 prep)
 - Combine with supersonic gas injection to reduce density rate of rise in H-mode
 - Use as tool for preliminary investigation of NBICD efficiency vs. density
 - Key operational questions:
 - Can shot-to-shot reproducibility be maintained with minimal/no He glow
 - If not, use LITER shutters to minimize Li evaporation into He glow
 - Preliminary tests of Li replenishment systems for LLD beyond LITER (if ready)

FY09-10 plans and goals on following page...

Draft plan/ideas for the NSTX lithium program to 2010 (II)

(D) NSTX

- FY09 Goal: Characterize LLD-1 as a pump (using dual-LITER Li replenishment)
 - Joule Milestone: "Assess particle control and hydrogenic fuel retention in tokamaks"
 - NSTX part of milestone can be achieved with 2-LITER alone but goal is to use LLD-I also
 - Experimental/operational ideas
 - Perform LITER evaporation rate/amount scans to assess impact on LLD-I pumping performance.
 - Tests of Li replenishment systems for LLD beyond LITER
 - Perform LLD temperature scans (solid Li to liquid Li) to assess if divertor or wall pumping dominates
 - Assess impact of plasma strike-point position, flux expansion, magnetic balance on LLD-I pumping
 - Obtain additional data on NBICD efficiency vs. density
 - Need LLD-I data by April of '09 to make decisions on LLD-II
 - LLD-II possibilities:
 - Remove LLD-I give up on LLD concept and research for FY10
 - Keep LLD-I as-is, but implement improved Li replenishment systems
 - 2nd Mo-coated Cu plate on inner divertor requires inboard Li replenishment (could be LITER)
 - Sandia CVD Mo-mesh in tray or more porous Mo-coated plate on outer divertor
- FY10 Use LLD-II as density/ELM/confinement control tool for physics experiments
 - Characterize core and pedestal transport and stability/ELMs vs. v^*
 - Assess NBICD and RWM stability vs. density/collisionality at NHTX/CTF levels of n_e/n_{GW}

-

Evaluation of the effect of lithium on core and pedestal relies on new and existing diagnostics

- Correlate global confinement improvement with local transport changes (TRANSP) and pedestal properties (analyze with ELITE)
- Correlate changes in Pedestal properties (Thomson, ChERS) with changes in edge Lithium (ChERS - new capability) and edge carbon (ChERS - existing)
- Correlate changes in pedestal impurities (carbon, Li) with source terms at PFCs (2-D fisheye camera, 1-D CCD cameras with C-I or Li-I filters)
 - Lower priority: study lithium transport in edge/SOL by comparing code calculations with data from other Li charge states
- New diagnostics to assess impact of LLD on divertor
 - Fast IR camera, divertor bolometry
 - Langmuir probe array on diagnostic tile strip
 - Lyman- α arrays for recycling estimates
 - Spectroscopi Penning gauge
 - Local divertor fast pressure gauge
 - Tile embedded fiber thermography

VSTX

PAC question #5

ISTX

<u>Macro Stability TSG XP802 will assess n = 1 RWM active</u> <u>stabilization using emulation of proposed ITER port plug coils</u>

ITER NBI blocks ~ 90° of toroidal angle from RWM coil access

- NSTX RWM coil system will be configured to emulate ITER coil configuration to test stabilization
 - Midplane coils, shielded by conducting structure
 - RWM coil buswork upgraded to allow single coils to be turned off
 - Turn off one and/or two coils (60° or 120° toroidal angle) and determine impact on RWM stabilization / DEFC

Possible issues

lack of toroidal symmetry may lead to n > 1 content – mode might bulge into gap ("mode nonrigidity")