
NSTX Program Overview for 2009-10 and Beyond

College W&M **Colorado Sch Mines** Columbia U Comp-X FILI **General Atomics** INI Johns Hopkins U LANL IINI Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

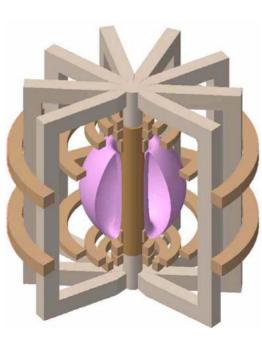
J. Menard For the NSTX Research Team

NSTX PAC-23 Meeting LSB B318, PPPL January 22-24, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching **IPP AS CR** U Quebec

(in priority order)

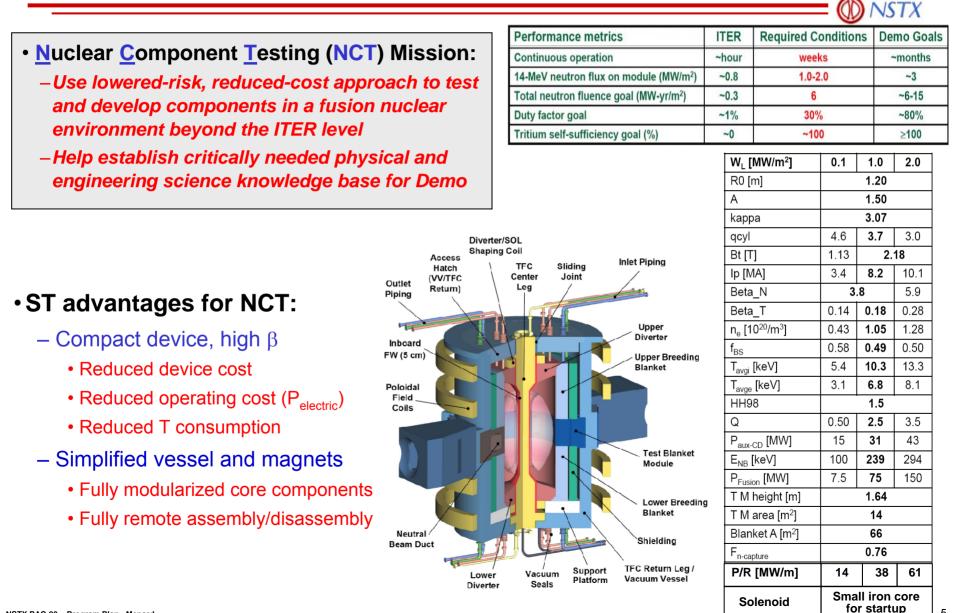
- Provide the physics basis for future ST-based devices, such as NHTX, ST-CTF, and ST-Demo
- Broaden the physics basis for ITER, actively participating in ITPA and US BPO
- Advance the fundamental understanding of toroidal magnetic confinement generally


ST is attractive configuration for "Taming the plasma-material interface"

• FESAC-SPP identified PMI issue as highest priority: "...solutions needed for Demo not in hand, ...require major extrapolation and substantial development"

<u>National High-power advanced Torus eXperiment (NHTX)</u> Mission: *Integration of a fusion-relevant plasma-material interface with stable sustained high-performance plasma operation*

NHTX goals and design features:


- Create next-step-relevant heat-fluxes
 → High P/R = 50MW/m = 2 × ITER (Demo-level (100MW/m) heat-fluxes possible)
- Minimize device size and cost
 - → Low-A, compact, high P_{AUX} → high P/R
- − Test fusion-relevant particle/power exhaust
 → Flexible/solid/liquid divertor, 2D/3D edge
- Develop methods to avoid T retention
 → Long-pulse trace-Tritium capability
 - (also short-duration 50/50 D/T α -physics studies)
- Test retention at reactor-relevant T_{wall}
 → High temperature first wall up to 600°C
- Allow for plasma/wall equilibration
 →Long pulses (200-1000s) → 100% NICD
 (100% NICD w/ NBI + BS → high performance)
- Rapid testing of new PMI concepts
 High duty factor, designed for maintain
 - \rightarrow High duty factor, designed for maintainability

P _{heat}	50MW
R ₀	1m
А	1.8-2
к	≤ 3
Вт	2T
I _P	3-4MA
β _N	4.5
β⊤	14%
n _e /n _{GW}	0.4-0.5
f _{BS}	≈ 70%
f _{NICD}	100%
H _{98Y,2}	≤ 1 .3
E _{NB}	110keV
P/R	50MW/m
Solenoid	$^{1\!\!/_{\!\!2}}$ swing to full I_P

ST is attractive configuration for fulfilling NCT mission

(from M. Peng APS-2007, based on NCT presentation to FESAC 8/7/2007)

Gaps in understanding and performance between present NSTX results and next-step STs motivate research goals (I)

- Transport & Turbulence
 - NHTX/ST-CTF assume sustained $H_{98y,2}$ = 1.3/1.5, NSTX can sustain \leq 1.1
 - Electron & ion transport scale w/ B_T , I_P differently in ST, and differ from high-A
 - χ_e usually dominates, $\chi_i \rightarrow \chi_{i-NC}$ common... does this extrapolate to high B_T, I_P?
 - \rightarrow Develop predictive capability for ion and electron thermal transport in ST
- Macroscopic Stability
 - NHTX does not require, but will study, sustained operation above no-wall limit
 - ST-CTF designed to operate at/below no-wall limit, but would benefit from higher β_{N}
 - Depending on J_{BS} profile (transport) & J_{NBI} , NHTX/ST-CTF could have $q_{min} < 2$
 - RWM and NTM stabilization physics depends on q, rotation, density, feedback
 - → Optimize RWM & NTM passive & active control, develop predictive capability
- Boundary Physics
 - NHTX/ST-CTF have P/R twice that of ITER and operate at low n_e/n_{GW} = 0.2-0.5
 - ST-CTF also requires very low T-retention, NHTX goal is to develop this
 - Novel power exhaust and pumping concepts + ELM control needed
 - Unclear how SOL/divertor heat-flux and pedestal transport/stability scale in ST
 - Test Liquid Lithium Divertor (LLD), understand & control pedestal/SOL/divertor

VSTX

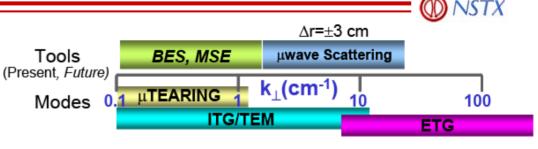
Gaps in understanding and performance between present NSTX results and next-step STs motivate research goals (II)

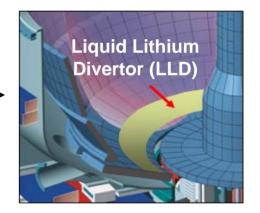
- Wave-Particle Interactions
 - ST-CTF operates in AE avalanche regime, NHTX marginally in this regime
 - Significant redistribution/loss of fast-ions from AE (and other MHD) possible
 - \rightarrow Develop predictive capability for fast-ion redistribution and loss
 - NHTX/ST-CTF plasmas are over-dense, require auxiliary H&CD beyond NBI
 - HHFW/ICRF favorable for heating (maybe core CD), EBW off-axis CD promising
 - Coupling to these waves efficiently has been most significant challenge
 - \rightarrow Understand and improve EBW coupling, test heating
 - → Understand & improve HHFW coupling, H&CD in H-mode, advanced scenarios
- Plasma Start-up and Ramp-up
 - NHTX designed with ½-swing OH, ST-CTF will require solenoid-free ramp-up
 - ST-CTF may start-up w/ iron-core, but would benefit from CHI, guns, PF-only
 - → Demonstrate successful solenoid-free start-up & ramp-up to benefit ST and AT
- Advanced Scenarios and Control
 - NHTX/ST-CTF assume full NICD operation, primarily from BS and NBICD
 - Need control of J(r), density, β , shape, EF/ELM/RWM etc. for minutes \rightarrow weeks
 - \rightarrow Demonstrate full NICD and J(r) control at high β for first time in ST (with 2nd NBI)

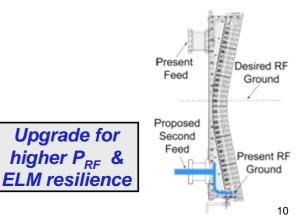
NSTX has been asked to create plans for 2 operating scenarios (and will present detailed plans in tomorrow's topical presentations)

- 3 yr plan (FY08-10) no operation after FY10
 - 1. Flat budget (i.e. inflation adjusted), with major upgrades converted into run-time
 - Also consider impact of operating only 2 years (FY08-09)
 → Assess what is lost by not running in FY10
- 6 yr plan (FY08-13) operation/upgrades thru FY13
 - 1. Flat budget (i.e. inflation adjusted)
 - 2. 10% budget increment

NOTE: M. Ono will cover upgrade & run-time details in much more depth in subsequent presentation.


NSTX near-term (FY08-10) key <u>upgrades</u> will enable compelling science compatible with both 3yr and 6yr operating scenarios


D NSTX


- Near-term research and corresponding upgrades are prioritized by:
 - Gap/uncertainty in extrapolation to next-steps
 - Uniqueness of contribution to ST and toroidal science
 - Likelihood that research can be "completed" by end of FY10
 - Whether upgrade is affordable with nearly flat-budget
- Key upgrade #1:
 - NSTX providing unique & critical data for electron transport for next-steps
 - Only ST with high-k scattering, have neoclassical ions, but no low-k diagnostics
 - \rightarrow Accelerate implementation of BES for full k-spectrum turbulence data
- Key upgrade #2:
 - Need particle pump to control density for high NBICD and low- ν physics
 - → Implement Liquid Lithium Divertor (LLD) unique, only near-term n_e control tool
- Key upgrade #3:
 - NHTX considering ICRF/HHFW to supplement NBI, NSTX only ST with HHFW
 - Significant recent improvements in HHFW coupling & heating efficiency
 - ECH/EBW system expensive and has long implementation time
 - → Accelerate HHFW system upgrades, defer ECH/EBW (can be done on MAST)

FY08-10 upgrades enable 3 new scientific thrusts on NSTX

- Determine modes responsible for anomalous transport using full complement of turbulence measurements
 - Full k-range of turbulence
- Investigate if liquid lithium can integrate four important potential benefits for fusion:
 - Divertor pumping over large surface area
 - LLD may be more compatible with high flux expansion solutions to divertor heat flux than cryo-pumps
 - Improved confinement
 - Reduction/elimination of ELMs
 - Longer term: steady-state high-heat-flux handling
- Determine if high-harmonic fast-waves (HHFW) can be utilized for heating & CD in advanced scenarios
 - HHFW/ICRF important for NSTX/NHTX/CTF/ITER
 - Must be compatible with large plasma-antenna gap
 - Must be compatible with H-mode profiles, ELMs

NSTX FY09-10 milestones exploit proposed upgrades while addressing key uncertainties in extrapolating to next-step STs

• 2009 Milestones:

- Joule Milestone (proposed):
 - Particle control and hydrogenic fuel retention in tokamaks
- Research Milestones:
 - Understand physics of RWM stabilization and control as a function of rotation
 - Characterize fast-ion redistribution from super-Alfvénic fast-ion-driven modes
 - Assess non-inductive current drive sources as a function of density at high β

2010 Milestones

- Research Milestones (proposed):
 - Study turbulence regimes responsible for ion and electron energy transport
 - Assess stability & control of sustained operation near the ideal-wall limit
 - Assess pedestal characteristics and ELM stability as a function of collisionality
 - Characterize HHFW heating and current drive in H-mode plasmas

NSTX

Key collaboration opportunities in FY08-10 program letter for universities & industry are well-aligned with research goals & upgrades

Macroscopic Plasma Physics

- Optimize EFC & RWM control far above no-wall limit
- Identify & understand NTM near ideal stability limits
- Understand disruptions current & thermal quench
- Mode detection/dynamics w/ non-magnetic sensors
- Multi-Scale Plasma Physics
 - Electron transport and relation to high-k turbulence
 - Rotation & momentum transport simulation/expts.
 - Particle fueling and transport w/ application to LLD
- Plasma Boundary Interfaces
 - Novel PFCs for particle and power handling
 - -H-mode pedestal stability, including RMP physics
 - Transport & turb. in SOL & impact on div. heat flux

- Waves and Energetic Particles
 - Fast ion transport from fast-ion driven MHD
 - -HHFW H&CD for ramp-up and sustainment
 - EBW coupling for heating & CD
- Plasma Start-up & Ramp-up w/o a Solenoid
 - Couple CHI to inductive & non-inductive ramp-up
 - Explore new start-up techniques such as plasma-guns
 - Develop solenoid-free ramp-up via HHFW and NBI
- Physics Integration
 - Model evolution/access for high NICD, high- β plasmas
 - Simulate/develop advanced shape control for LLD & CTF

- 1/3 of potential collaborators submitted proposals for "Plasma Boundary Interfaces"
 Many submissions related to Li and LLD
- 1/4 of potential collaborators submitted proposals for "Waves & Energetic Particles"
 DOE proposal review process nearly complete

Remainder of presentation provides overview of NSTX research plan for various operating scenarios:

- 1. FY08-10 operation
- 2. What is lost w/o FY10 operation
- 3. FY11-13 upgrades & operation

Plans are organized by topical science area:

- 1. Transport & Turbulence
- 2. Macroscopic Stability
- 3. Boundary Physics
- 4. Wave-Particle Interactions
- 5. Plasma Start-up and Ramp-up
- 6. Advanced Scenarios and Control

Transport & Turbulence high-priority research (FY08-10)

🔘 NSTX

- Understand coupling between ion energy & angular momentum transport
 - Evaluate generation of plasma rotation & momentum transport, and assess the impact of plasma rotation on stability and confinement (FY08 Joule milestone)
 - Assess the role of flow shear in controlling plasma turbulence and transport using poloidal CHERS (FY08 milestone)
- Study turbulence regimes responsible for transport (FY10 milestone)
 - Take advantage of suppressed anomalous ion transport + existing high-k + MSE diagnostics to determine if ETG is the cause of the measured χ_e
 - Test ν^{\star} dependence of e-transport w/ LLD (TEM & ETG scale differently vs. $\nu^{\star})$
 - Accelerate BES to measure low-k, implement high- k_{θ} for polarization
 - Add additional Thomson channels to improve resolution of ITBs (incremental)
 - Test leading transport models (ITG,TEM,ETG) vs. measured fluctuation spectra, critical gradients, heat flux, response to perturbations
 - Novel MSE-LIF for E_r, B, p, q profiles w/o heating beam (HHFW heated)
 - Validate transport models for extrapolation to next-step STs
- Understand energy & momentum transport scaling for next-step design
 - Understand differences relative to high-A
- Understand H-mode threshold scaling/physics for next-step STs

Macroscopic Stability high priority research (FY08-10)

- Improve understanding of rotation effects, RWM & NTM stability physics
 - Evaluate MHD sources of plasma viscosity and assess the impact of plasma rotation on plasma stability, including NTM (FY08 Joule milestone)
 - Further understand the physics of RWM stabilization and control as a function of plasma rotation (FY09 Milestone)
 - Determine dependence of NTMs on toroidicity, plasma rotation, error fields
 - Assess impact of LLD operation (low n_e, low Z, no ELMs) on profiles & stability
 - Understand non-resonant and resonant (island) NTV, compare to computation
- Understand & sustain high- β near ideal-wall limit (FY10 Milestone)
 - Implement & utilize real-time β -control using rtEFIT and NBI modulation
 - Implement & utilize rotation control using real-time-v_b + NTV (incremental)
 - Decrease RWM poloidal deformation & associated loss of control
 - Characterize disruptions: Extend I_P quench data contributed to ITPA/ITER to include halo currents, thermal quench for design of next-step STs
- Validate stability and/or control models for reliable extrapolation of sustained high- β operation to next-step STs and ITER
 - Model-based controllers for plasma shape and vertical position
 - Test fully 3D RWM control models w/ multi-mode physics and plasma rotation

OD NSTX

Boundary Physics high-priority research (FY08-10)

🔘 NSTX

- Understand scaling & mitigation of high divertor heat flux
 - Characterize divertor heat flux and access to detachment (FY08 milestone)
 - Compare divertor heat flux widths to mid-plane density and temperature widths and edge turbulence characteristics
- Access and assess reduced density operation for next-step STs
 - Implement and utilize Liquid Lithium Divertor (LLD) modules
 - Assess particle control & H/D retention w/ LITER/LLD (FY09 Joule milestone)
 - Use LLD + rt-SGI + rt- n_e to sustain & control up to 50% lower n_e
- Predict and control pedestal stability & transport in the ST (FY10 milestone)
 - Study ELM reduction and suppression, with emphasis on studying RMP physics using ITER-relevant mid-plane ex-vessel control coils
 - Note that DIII-D ELM suppression results are most successful at reduced collisionality and with divertor pumping active
 - \rightarrow LLD could be important element of NSTX RMP ELM suppression studies
 - Determine relationship of ELM properties to shape & Li conditioning
 - ELMs eliminated with Li evaporation in some scenarios in 2007
 - Compare stability of pedestal/ELMs with model calculations
- Design non-axisymmetric control coils (NCC) for ELM control

Wave-Particle Interaction high-priority research (FY08-10)

- Develop predictive capability for AE-induced fast-ion transport
 - Focus energetic particle research on fast-ion transport in high NBICD fraction Hmode discharges at reduced density relevant to next-step ST's
 - Study fast-ion redistribution from super-Alfvénic fast-ion modes (FY09 milestone)
 - Fast-ion p(r) from reconstructed total (MSE-LIF) thermal (MPTS+CHERS)
 - Validate non-linear AE simulations for predicting next-step ST performance
- Develop efficient wave heating and current drive tools needed for heating and control of advanced ST scenarios
 - For high-harmonic fast wave (HHFW), understand and improve coupling to, and heating of, H-mode deuterium NBI-heated plasmas (FY10 milestone)
 - Antenna upgrades + ELM resilience → high-power HHFW H&CD to increase electron stored energy to increase NICD fraction → 1, needed for next-step ST's
 - For Electron Bernstein Wave (EBW), determine and understand plasma conditions that maximize efficiency of coupling to EBW
 - Collaborate on ECH/EBW startup and EBW coupling/heating on MAST & Pegasus

Solenoid-Free Start-up & Ramp-up high-priority research (FY08-10)

- Integrate Coaxial Helicity Injection (CHI) into normal operations
 - Couple inductive ramp-up to CHI plasmas (FY08 Milestone)
 - Develop operating conditions aimed at improving the control and increasing the current and closed poloidal flux of CHI → staged capacitor banks
 - Use CHI-startup to increase pulse lengths of high-performance discharges
 - Test non-CHI start-up methods
 - Use CHI as pre-ionization source for vertical field startup
 - Test plasma gun startup (from Pegasus) when technically ready
 - Assist CHI, vertical field startup, and gun startup with high-power ECH preionization (incremental)
 - Simulate iron-core plasma formation of ST-CTF using OH solenoid
 - Plasma current ramp-up:
 - Use HHFW heating and CD in current ramp to reduce flux consumption
 - With sufficient power (antenna upgrade + ELM resilience), use HHFW for BS current overdrive and RFCD to ramp-up plasma current

NSTX

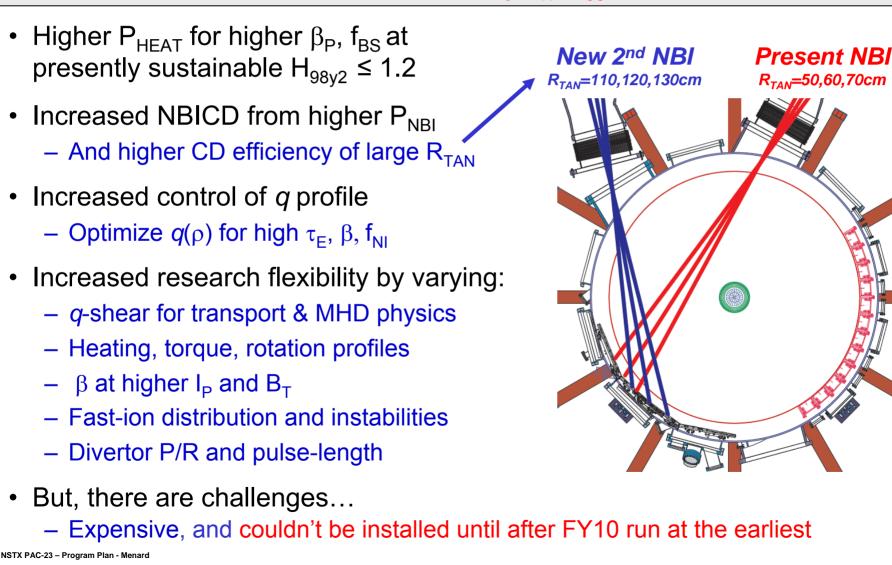
Advanced Scenarios & Control high-priority research (FY08-10)

D NSTX

- Develop high non-inductive CD fraction plasmas with high-beta and high bootstrap fraction under sustained conditions:
 - Increase NBICD using lower n_e, higher T_e from LITER/LLD (BP FY09 milestone)
 - Assess impact of AE avalanches on NBICD (WPI FY09 milestone)
 - Assess/increase energy confinement with LITER/LLD
 - Assess NICD sources as a function of density at high β (ASC FY09 milestone)
 - Conditions: κ up to 2.8, $\tau \ge \tau_{CR}$, low-n_e for high NBICD fraction, high β_N for high f_{BS}
 - Increase f_{BS} using HHFW electron heating (WPI FY10 milestone)
 - Characterize and maximize NICD fraction versus n_e , H_{98} , shaping, and q
 - Performance GOAL: decrease inductive I_P by $\frac{1}{2} \rightarrow f_{NICD} = 65-70\% \rightarrow 80-90\%$
- Improve control, validate predictive modeling
 - Control of NBI in PCS, feedback control of β (with macro TSG)
 - Aim to achieve long-pulse density control (with boundary TSG)
 - Improved pumping (LITER/LLD), real-time fueling (SGI) and n_e measurement (FIR)
 - Validate integrated models of $J(\rho)$, $p(\rho)$ evolution (pTRANSP/TSC)

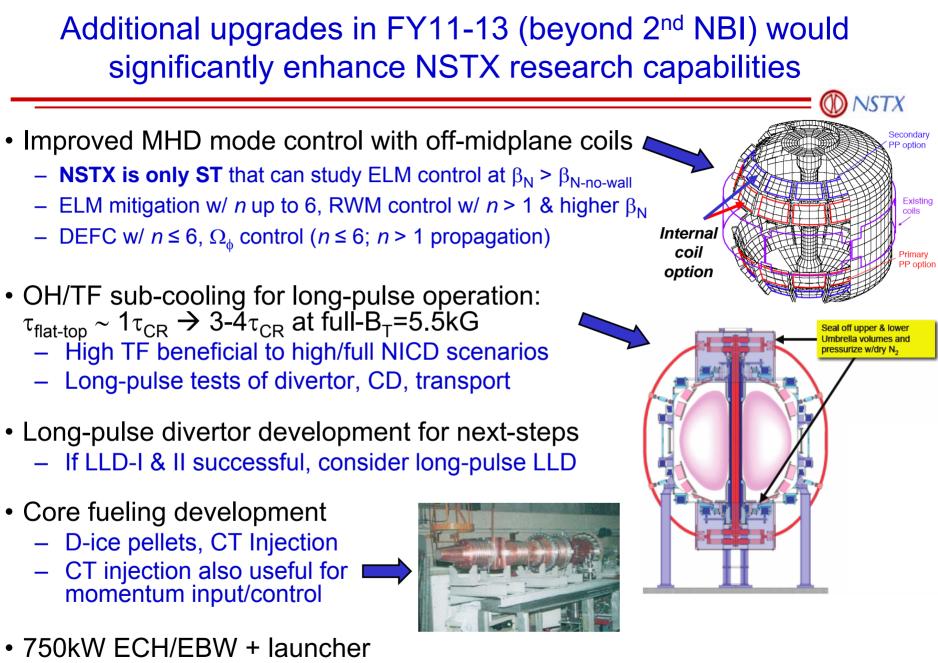
The following unique ST research opportunities would be lost without operation in FY10: (For more comprehensive list see topical presentations)

- Transport & Turbulence
 - Diagnose and understand k-dependence of ion & electron turbulence & transport
- Macroscopic Stability
 - Test and understand robustness of operation near the ideal-wall limit
- Boundary Physics
 - Test D pumping of LLD, fully assess pedestal transport & stability at low n_e w/ Li
- Wave-Particle Interactions
 - -Assess physics/impact of *AE avalanches in H-mode w/ full diagnostics
 - Unique ST test of HHFW heating in H-mode w/ P_{RF} upgrade + ELM resilience
- Plasma Start-up and Ramp-up
 - Unique test of CHI pre-ionization/current with PF-only ramp-up and/or gun startup
- Advanced Scenarios and Control


– Fully test NBICD at low n_e , J_{NBI} redistribution, LLD, HHFW in advanced scenarios

NSTX

With operation & upgrades after FY10, NSTX can significantly reduce the uncertainty in extrapolation to next-step STs


- FY08-10 results → can be extended to next-step demonstration & validation
- Preliminary understanding & optimization ion & electron turbulence vs. k
 - → Complete high-k+low-k studies, momentum, particle transport studies + theory validation
- Passive and active control of vertical, RWM, and NTM instabilities

 → Demonstrate & validate robust vertical+RWM+EF+ELM+J(r)+rotation control at high-β_N
- Divertor heat-flux mitigation at moderate P/R, understanding SOL transport scaling
 Demonstrate heat-flux mitigation at higher P/R, validate SOL transport models
- Initial particle control using Liquid Lithium Divertor (LLD) for low n_e/n_{GW}
 - → Demonstrate long-pulse divertor/LLD for sustained low n_e/n_{GW} at high P/R
- Understand fast-ion transport from AE avalanches in L-mode, low-n_e H-mode
 → Validate avalanche physics in high-n_e H-mode, ideally w/ NHTX/CTF-like tangential NBI
- Initial optimization of high-power HHFW in H-mode, plus EBW coupling studies
 - → Demonstrate HHFW heating in advanced scenarios, test/collaborate on EBW heating
- Develop CHI, PF-only, & gun start-up, and assess HHFW ramp-up capability
 Demonstrate high-I_P startup w/ EC pre-ionization, demonstrate HHFW I_P ramp-up
- Study high NI and NBICD fraction at reduced density for short durations (1τ_{CR})
 → Demonstrate full NICD at high β and confinement with J(r) control for τ_{flat} >> τ_{CR}

- 2nd NBI is centerpiece of FY11-13 plan (w/ increment), as it would have many cross-cutting research benefits
- Demonstrate 100% NICD (NBI+BS) w/ n_e , β_N , H_{98} similar to present values
- Increased control of q profile
- Increased research flexibility by varying:

- But, there are challenges...

- ECH pre-ionization for startup, initial local EBW heating

FY11-13 high-priority research utilizing proposed major upgrades (I)

Transport and Turbulence

- Verify scaling trends at high P_{heat} ($\leq 12 \text{ MW} 2^{nd} \text{ NBI}$) & long-pulse ($\leq 2.5 \text{ s} \text{sub-cooling}$)
- Electron transport w/ internal δB (MSE), full low-k, modulated EBW for varied local ∇T_{e-crit}
- $-v_{pinch}$, χ_{φ} assessment with off-midplane control coil braking, torque variation from 2nd NBI
- Study effects of reduced v and recycling (from long-pulse LLD) on all transport channels

Macroscopic Stability

- Real-time MSE w/ real-time V_{ϕ} (E_r corr.) for real-time EFIT, β-feedback using stability models
- Use off-midplane coils to test viscosity theories (n≤6), use 2^{nd} NBI + braking to control V_{ϕ}
- RWM control w/ off-midplane coils + non-magnetic sensors (for long-pulse next-steps)
- Enhanced EF correction from off-midplane control coils to sustain high rotation and β_N

Boundary Physics

- LLD performance with higher input power, long pulse from 2nd NBI + sub-cooling
- SOL turbulence and widths with higher input power
- High m,n RMP impact on ELMs, heat flux, edge rotation and barrier formation
- Detachment and heat flux mitigation with higher input power and reduced density (LLD)
- Develop and utilize core fueling beyond NBI: pellets, compact toroids

FY11-13 high-priority research utilizing proposed major upgrades (II)

- Wave-Particle Interactions
 - Study fast-ion driven modes w/ more tangential NBI, diagnose with neutron collimator
 - Upgrade to remotely-steered O-X-B launcher, 700 kW core & off-axis heating studies
- Plasma start-up and ramp-up
 - Increase pre-ionization and heating power for PF-only/CHI/gun startup
 - Combine upgraded HHFW + ECH/EBW for fully NI plasma startup & ramp-up
 - Extend long-pulse plasmas using flux savings from non-solenoidal startup & ramp-up
- Integrated scenario development
 - Demonstrate full NICD with NBI + BS with J profile control with 2nd NBI
 - Demonstrate profile equilibration w/ extended flat-top to $4\tau_{CR}$ w/ sub-cooled OH/TF
 - Control n_e, increase confinement with long-pulse divertor + core fueling
 - Sustain τ_E , β_N by suppressing ELM, RWM, EF with off-midplane 3D coils

NSTX participation in International Tokamak Physics Activity (ITPA) benefits both ST and tokamak/ITER research

Actively involved in 18 joint experiments – contribute/participate in 25 total

Boundary Physics

- PEP-6 Pedestal structure and ELM stability in DN
- PEP-9 NSTX/MAST/DIII-D pedestal similarity
- PEP-16 C-MOD/NSTX/MAST small ELM regime comparison
- DSOL-15 Inter-machine comparison of blob characteristics
- DSOL-17 Cross-machine comparison of pulse-by-pulse deposition

Macroscopic stability

- MDC-2 Joint experiments on resistive wall mode physics
- MDC-3 Joint experiments on neoclassical tearing modes including error field effects
- MDC-12 Non-resonant magnetic braking
- MDC-13: NTM stability at low rotation

Transport and Turbulence

- CDB-2 Confinement scaling in ELMy H-modes: b degradation
- CDB-6 Improving the condition of global ELMy H-mode and pedestal databases: Low A
- CDB-9 Density profiles at low collisionality
- TP-6.3 NBI-driven momentum transport study
- TP-8.1 NSTX/MAST ITB similarity experiments
- TP-9 H-mode aspect ratio comparison

Wave Particle Interactions

MDC-11 Fast ion losses and redistribution from localized Alfvén Eigenmodes

Advanced Scenarios and Control

- SSO-2.2 MHD in hybrid scenarios and effects on q-profile
- MDC-14: Vertical Stability Physics and Performance Limits in Tokamaks with Highly Elongated Plasmas

NSTX

NSTX contributes to near-term and long-term issues for ITER

D NSTX

- Near-term (Feb. 08) experiments in support of critical design activities:
 - ELM suppression
 - Any demonstration of ELM suppression using a single row of coils would provide very valuable data for improved RMP understanding
 - n=2, or combination of n=1 and n=3 yet to be tried on NSTX
 - Does braking from RMP vary w/ T_i , v_i , n, ϵ as NTV theory predicts?
 - Vertical control
 - Is ITER n=0 control model valid, and/or consistent w/ experiments?
 - Allow plasma to drift vertically, then try to regain control
 - Quantify controllable $\Delta Z,$ compare across devices, compare to ITER
 - Could impact ITER PF coils, power supplies, ${\sf I}_{\sf i}$ operating range
 - RWM control
 - Simulate proposed ITER port-plug coil design to assess impact of toroidal asymmetry of coil layout (due to NBI interferences) on RWM control capability
- Longer-term ST research benefiting ITER & fundamental toroidal science:
 - Understanding of electron thermal transport, β scaling of confinement
 - RWM feedback at low rotation with mid-plane coils, RWM damping physics
 - RMP physics understanding, heat flux mitigation, pedestal physics
 - Unique multi-AE "avalanche" studies with full diagnostics + non-linear modeling
 - HHFW coupling physics surface-wave excitation relevant to ITER ICRF

NSTX will make world-leading contributions to ST development, and contribute strongly to ITER and fundamental toroidal science

- The FY08-10 plan:
 - Focuses research to address key gaps in extrapolating to next-step STs
 - Contains targeted upgrades that enable exciting new science:
 - Understand anomalous electron (and ion) energy transport
 - Assess impact of liquid lithium on pumping, confinement, ELMs
 - Understand and utilize HHFW for advanced scenarios
- With only 2 years of operation (FY08-09), significant research opportunities would be lost in all topical science areas
- The FY08-13 plan goals are to:
 - Develop a strong predictive capability for the ST, also ITER, and beyond
 - Demonstrate the integrated high-performance scenarios of next-step STs
 - Achievement of FY08-13 predictive and performance goals would enable extrapolation to next-step STs with high confidence

NSTX