

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU **General Atomics** R. Raman and D. Mueller Johns Hopkins U Lehigh U University of Washington / PPPL LANL LLNL For the NSTX Research Team Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI 23rd Meeting of the NSTX Program Advisory Committee Princeton U January 22-24, 2008 SNL Think Tank, Inc. PPPL **UC Davis** UC Irvine UCLA UCSD U Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

INL

Solenoid-free Start-up and Ramp-up

York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching IPP AS CR**

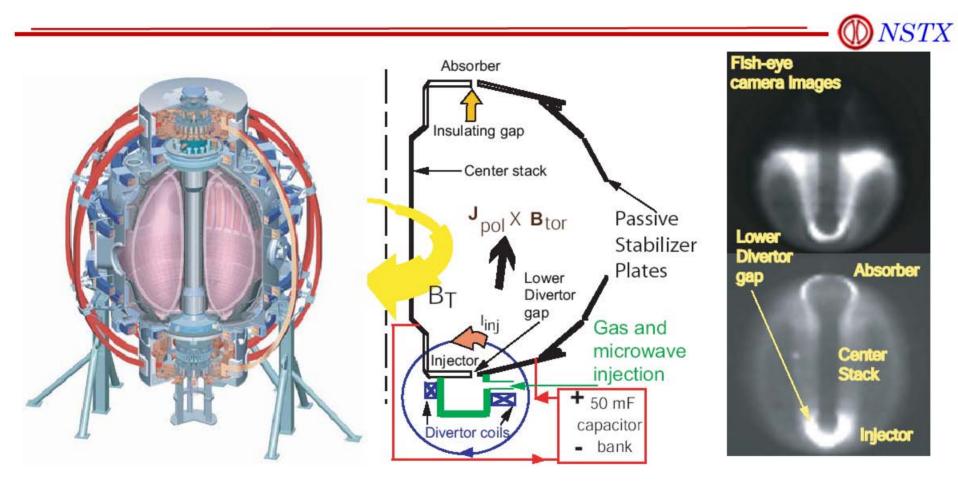
Culham Sci Ctr

Motivations for Solenoid-free Plasma Startup

- The development of methods for solenoid-free current initiation would improve the prospects of the ST as a CTF
- Could result in a more compact tokamak
- Of the three large machines in the US (DIII-D, NSTX, C-Mod) only NSTX is engaged in solenoid-free plasma startup research
- NSTX is exploring CHI and Outer PF Startup as methods for plasma current initiation

<u>Goal</u>: Initiate solenoid-free plasma currents, couple to non-inductive CD methods and ramp-up to high beta, high bootstrap current fraction discharges STX

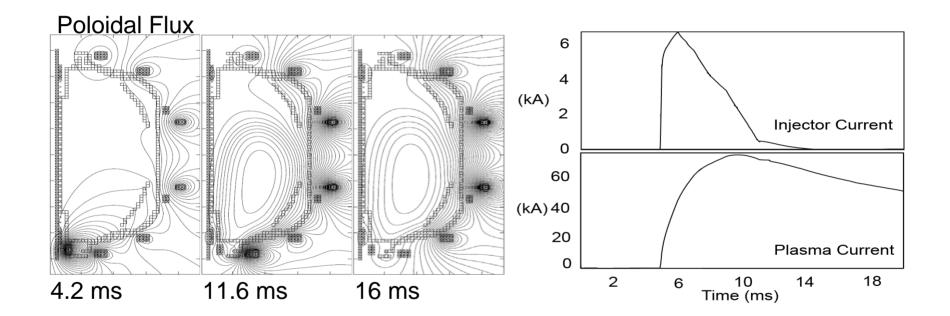
PAC-21 action items in Solenoid-free Plasma Startup


- ✓ PAC21-25: Demonstration of solenoid-free plasma formation and current ramp-up is one of the defining issues for ST research.
- ✓ PAC21-26: NSTX should consider incorporating CHI into its routine operation.
 Fully diagnose including current profile measurements.
- ✓ PAC21-27: Further optimizations such as low density and low impurities might also be required.
- \checkmark PAC21-28: If possible Li capability should be incorporated with CHI.
- ✓ PAC21-29: Test synergetic effects of CHI with other startup methods.
- ✓ PAC21-30: 2-D or 3-D modeling of Transient CHI and follow-on current drive.

Methods for Solenoid-free Plasma Start-up that can be tested in NSTX

- Coaxial Helicity Injection (Developed on HIT-II)
 - Applicable to STs & tokamaks with superconducting PF coils
- Outer PF Start-up (Developed on START & MAST)
 - Requires a test with PF coils located outside vacuum vessel
 - NSTX unique with PF coils located outside vacuum vessel
 - Also being tested in a small ST in Tokyo (UTST)
- Plasma Gun Start-up (Developed on Pegasus)
 - Plasma Gun could be withdrawn after plasma initiation

STX


NSTX Incorporates Toroidal Insulation Breaks to Enable CHI Operation

Transient CHI: Axisymmetric reconnection leads to formation of closed flux surfaces.

CHI for an ST: T.R. Jarboe, Fusion Technology, **15** (1989) 7 Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL **90**, (2003) 075005-1

Simulated Transient CHI Discharges using TSC [PAC21-30]

After having successfully reproducing the 60kA discharge, the 160kA discharge will be simulated for benchmarking TSC and for understanding the full potential in NSTX and scaling to ST-CTF

TSC: Developed by S.C. Jardin, PPPL

VSTX

CHI plasmas successfully

couple to transformer induction in NSTX for first time

VSTX

0.05

7

0.04

0.03

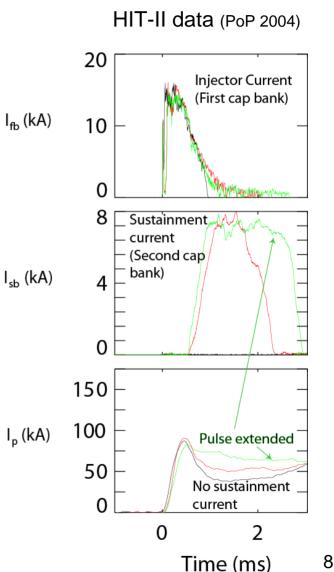
Plasma Current **CHI only** 200 **Induction only** 150 **CHI + induction** kA 100 50 CHI + induction: $I_P = 120 kA$ 0 (Boronization & improved PF Loop voltage programming) Shots: 123398 3 123401 FUTURE optimization [PAC21-27]: 124224 124271 Improved divertor conditioning 2 V - Reduce absorber arcs 1 ~25% - Staged cap. banks (FY08) Flux savings 0

0

0.01

0.02

Seconds


- Abs. coils (FY09)
- Use 350kW ECH (FY10incremental)

FY 08 Plans [Optimize Transient CHI Startup]

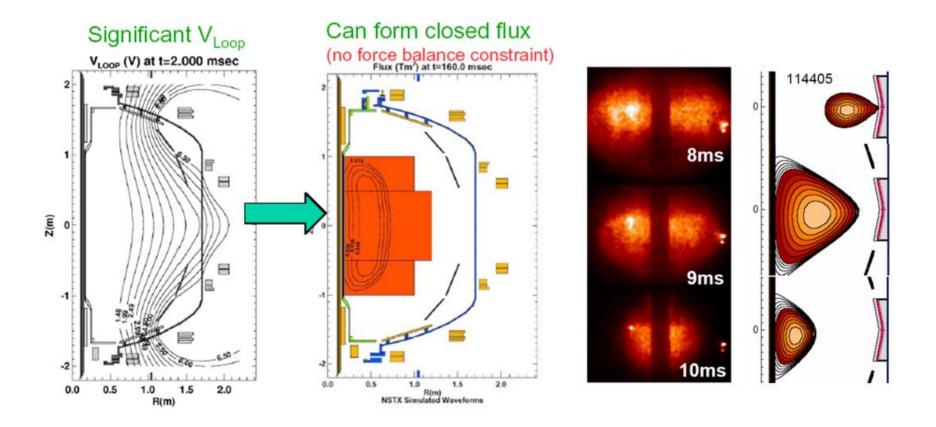
- Improve coupling to induction to show CS flux savings [FY08 milestone]
 - Operate with improved divertor surface conditions
 - Use Staged Capacitor bank to improve coupling (extends CHI pulse length during hand-off to OH)
 - Initially ramp OH solenoid unidirectionally from zero current
- Produce a reference CHI initiated long pulse discharge [PAC21-26]
 - Later use a pre-charged solenoid to extend pulse length

Run Plan

- Initial 4 day campaign to show CS flux savings (~ 1 day for conditioning)
- Second 4 day campaign for optimization

NSTX

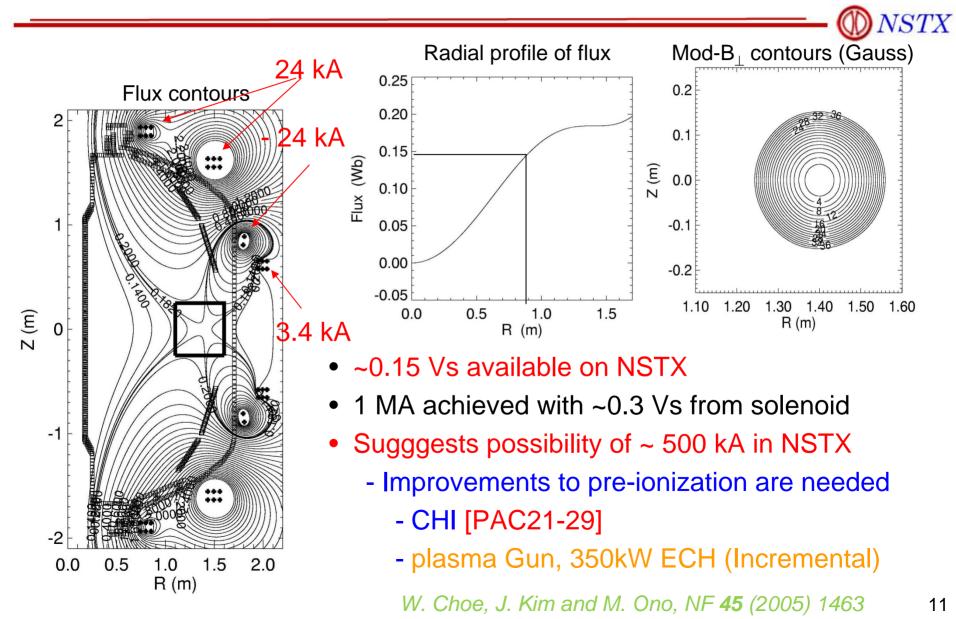
Outer PFs have been used to startup the plasma


- •MAST (START) poloidal field coils + radial compression
- •JT-60U Aggressive application of RF heating and current drive
- •NSTX 20kA plasmas produced with large outboard field null + HHFW

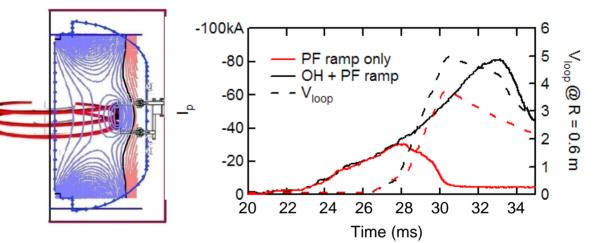
Four important conditions for "Inductive" plasma startup:

- 1. Satisfy the "Lloyd condition" for plasma startup. With strong ECH (in DIII-D), $E_T \cdot B_T / B_P \ge 0.12$ kV/m.
- 2. The field null must be maintained for a sufficient duration. 2-3 ms in the presence of wall eddy currents.
- 3. Need sufficient voltage or heating to get through radiation barrier.
- 4. Sufficient available flux for subsequent current ramp up to ~ 500 kA.
 - At this current NBI becomes an effective non-inductive current drive tool.

NSTX


Outer-PF ramp from near zero current/flux

20kA produced in NSTX using this configuration
Requires improved pre-ionization for optimizations


VSTX

Creation of High-Quality Field-Null with Significant Poloidal Flux is Possible with NSTX PF Coils

Plasma Gun Startup (FY10)

- Results from single gun source in Pegasus are promising
- Estimated installation on NSTX (FY 10).

New triple gun array installed on Pegasus

- All hardware tested
- Currently learning how to use 3 guns simultaneously
- Will assess scaling relations for current build up in NSTX

ISTX

FY 09-10 Plans

CHI

- Increase Transient CHI produced current [PAC21-27]
 - Use higher Voltage
 - Reduce absorber arcs (PF control)
 - Improve coupling to OH
 - Looking forward to LLD (initial integration with metal plates, then including Lithium) [PAC21-28]

FY10

- Extend performance of OH shots
- Test CHI / PF Synergism [PAC21-29]

Outer PF Startup

FY10

- Test outer PF Startup
 - Use CHI pre-ionization/current
 - 350 kW ECH (incremental)

Gun Startup

FY10

- Test Plasma Gun Startup
 - Assessing requirements & schedule

FY 11-13 Plans

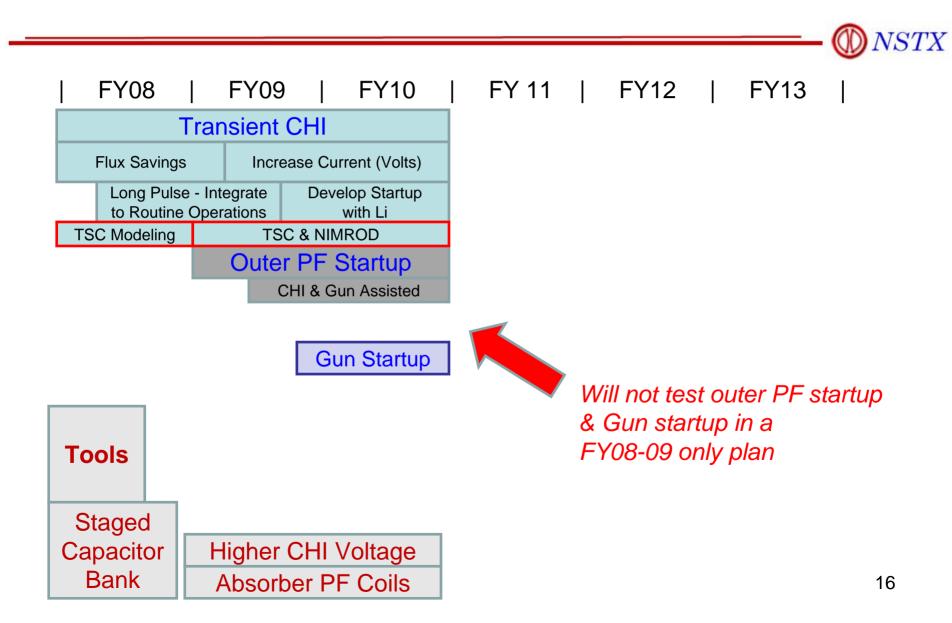
NSTX 5yr Goal: Full Non-inductive startup and sustainment

CHI

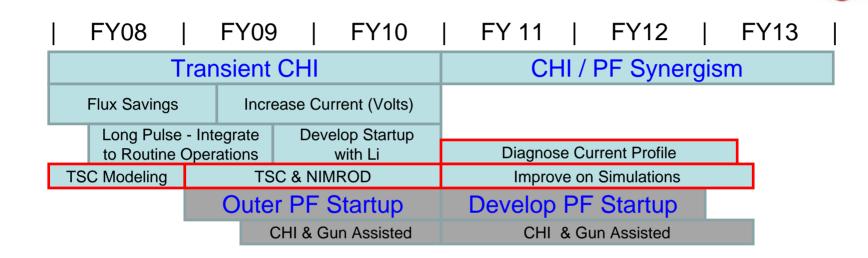
- Develop Edge current drive
 - Upgrade control magnetics
 - Study the effect of edge current on ELMs, SOL flows, MHD (basic physics also applicable to tokamaks)
- Investigate relaxation current drive potential in NSTX
 - Can the startup current be enhanced beyond what is possible with Transient CHI?
 - Is steady-state current drive possible?
 - Requires DC PS & Improved Abs. Arc control
- Develop CHI / PF synergism
 - Maximize solenoid-free startup currents
 - Use ECH (incremental) to heat CHI for ramp-up with HHFW

Outer PF Startup

- Test alternate outer PF Startup techniques
 - Large field null scenarios
 - Small field null scenarios
 - Use Gun Pre-ionization
 - ECH Pre-ionization (incremental)
 - What is the potential for outer PF startup in a ST?

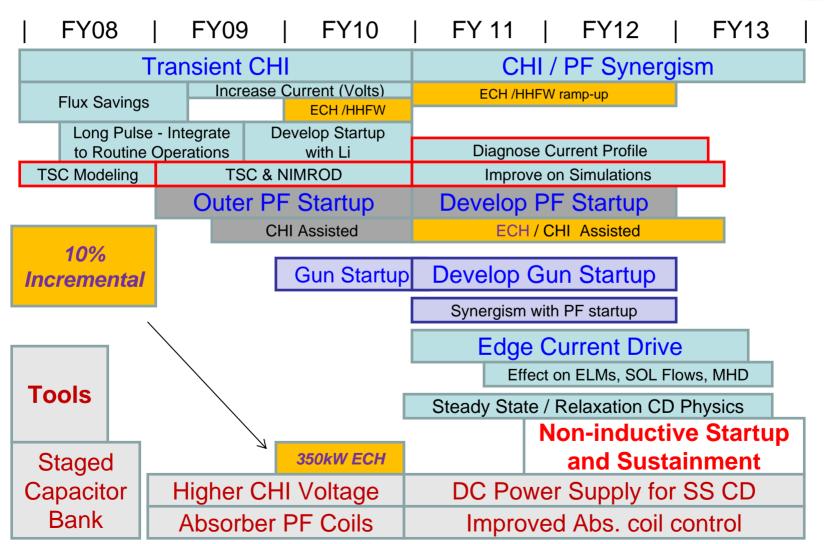

Gun Startup

- First test of plasma guns in a large ST
- What is the scaling for Gun Startup currents in a large ST?


NSTX is the only Large Machine Studying CHI & Outer PF Startup (with coil outside Vacuum Vessel)

- Transient CHI to be optimized by FY10
 - Successful initial development on HIT-II
 - Produced record non-inductive startup currents in NSTX
 - Scaling to larger machines is attractive
 - FY 08 Milestone is to produce a OH coupled long pulse discharge & show flux savings
 - GOAL: Incorporate CHI into normal operations
- Test plasma startup using outside PF induction (FY 09-13)
 - Potential to produce MA level startup currents in large STs
 - CHI & Guns for pre-ionization, ECH (incremental)
 - Can significantly benefit from NSTX operation beyond FY10
- New non-inductive CD Methods could significantly benefit from operations beyond FY10
 - Edge & Relaxation CD
 - Gun Startup
 - Synergism between methods leading to a realization of full non-inductive startup and sustainment

Solenoid-free Plasma Startup Time Line FY08 – FY10


Solenoid-free Plasma Startup Time Line FY08 – FY13

	Gun Startup	Synergism with PF startup
		Edge Current Drive
Tools	r	Effect on ELMs, SOL Flows, MHD Steady State / Relaxation CD Physics
	L	Non-inductive Startup
Staged		and Sustainment
Capacitor Bank	Higher CHI Voltage	DC Power Supply for SS CD
	Absorber PF Coils	Improved Abs. coil control

NSTX

Solenoid-free Plasma Startup Time Line FY08 – FY13 + 10% Budget Increment

VSTX