

Boundary Physics Progress and Plans

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

For the NSTX Research Team

NSTX PAC meeting Conference Room LSB-B318, PPPL Feb. 18-20, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Boundary physics program in NSTX mainly focused on NSTX-U and next step ST design needs

Program also contributes to toroidal confinement and ITER physics

- SOL and divertor physics
 - Particle control: Lithium for pumping and a concomitant fueling program for density control
 - SOL turbulence and transport & SOL width studies
 - Divertor physics, emphasis on heat flux management
- H-mode Physics
 - Pedestal and ELM studies
 - Participation in L-H power threshold studies (transport & turbulence group)

Increasing importance of boundary physics program in NSTX highlighted by upcoming Joint Research Targets (JRT)

- SOL and divertor physics
 - Particle control: Lithium for pumping and a concomitant fueling program for density control
 - SOL turbulence and transport & SOL width studies
 - Divertor physics, emphasis on heat flux management
- H-mode Physics
 - Pedestal and ELM studies
 - Participation in L-H power threshold studies (transport & turbulence group)

2009 JRT: hydrogen retention in Li

2010 JRT: heat transport peak heat flux SOL width

2011 JRT: (proposed) pedestal physics

Major facility upgrades (yellow boxes) represent both opportunities to and responsibilities for the boundary physics program

- SOL and divertor physics
 - Particle control: Lithium for pumping and a concomitant fueling program for density control
 - SOL turbulence and transport & SOL width studies
 - Divertor physics, emphasis on heat flux management
- H-mode Physics
 - Pedestal and ELM studies
 - Participation in L-H power threshold studies (transport & turbulence group)

LLD program Skinner's talk

CS upgrade Long pulse div. 2nd NBI

CS upgrade 2nd NBI NCC upgrade

- SOL and divertor physics for prediction of plasma-wall interaction footprint using theorybased cross-field transport models
 - Divertor heat and particle flux optimization $\frac{2}{h}$
 - Interpretive analytic and 2-D modeling
 - Edge transport and turbulence ⇔ SOL width
 - World-class SOL turbulence measurements
- Pedestal and ELM Physics

2010 JRT: heat transport peak heat flux SOL width

Divertor physics and detachment physics program focuses on needs for NSTX-Upgrade and next step ST design

- ST effects: low l_{||}, small R, low in/out power split make outer leg detachment difficult
 - Power management through flux expansion and partial detachment (PDD) will be required for heat dissipation in high power ST's
 - ST effects above allow broader test of detachment physics in 2-D codes
- Heat flux management through plasma shaping and detachment with good confinement shows promise in NSTX
 - Considering He, CD₄ puffing PAC23-09

Long pulse center stack upgrade and 2nd NBI will challenge existing carbon PFCs while presenting prospect of very high heat flux studies

- Maximum pulse length of 2-3 sec for existing graphite ATJ PFCs
 - NSTX data (upper panel): P_{NBI} =6 MW, LSND, I_p =0.8 MA, B_t =0.45 T
 - q_{peak} of 20-30 MW/m² may be possible with 2nd NBI, if scaling holds
- q_{peak} might be even higher at I_p=2 MA
 - q_{peak} increases non-linearly with I_p , because λ_q falls quickly
 - q_{peak} also drops when ELM-free (w/Li)
 - Might require double-null geometry, or novel divertors (X-D, super X-D, or snowflake)
- High heat flux allows broader parameter range for experiments and improved predictive capability for next step STs,
 - NHTX low flux expansion (lower panel)

Novel divertors (X, Super-X, snowflakes) being considered for heat flux management with center stack and 2nd NBI upgrades

NSTX 2009 PAC meeting – Boundary Physics (Maingi)

Jan. 19, 2009

8

Divertor and detachment Physics Plan

2009-2011

- Lower divertor power accountability and transient loading studies
- Improved detachment control for long pulse discharges
- Divertor performance dependence on geometry
- MARFE characterization studies
- Effect of 3-d fields on heat flux spreading

New tools: Fast IR camera (09), divertor bolometer (09), divertor imaging spectrometer (10)

Once CS and NBI upgrades become available

- Long pulse heat management at high I_p, B_t, P_{NBI}
- Private flux region physics studies

New tools: Long-pulse divertor, divertor Thomson, 2nd NBI, Xpoint/divertor VUV spectroscopy

Edge T & T studies will focus on connection between measured turbulence characteristics and SOL widths

- Dependence of heat flux width (λ_q^{mid}) not well understood in tokamaks
 - $\lambda_q^{mid} \text{ larger in NSTX than high aspect} \\ ratio tokamak analytic scalings$
 - Strong I_P dependence of NSTX λ_q^{mid}, but magnitude at high I_p overlaps with tokamak database
 - λ_q^{mid} further reduced by ~ 50% in lithium induced ELM-free H-modes
 - Ratio of λ_{Te}/λ_q consistent with electron conduction dominance in near SOL (Ahn, PoP 2008)
- Modeling of effect of turbulent transport on SOL widths commencing
 - Turbulence modeling already connecting to analytic theory of blob propagation
 - New BES system will augment gas-puff imaging for SOL turbulence measurement

10

Edge T & T Physics Plan

2009-2010

- Comparison of midplane and div. turbulence characteristics with models, e.g. blob behavior in highly radiative plasmas: SOLT(Lodestar), BOUT(LLNL)
- Scaling of midplane λ_n , λ_T , λ_Γ , λ_q with major parameters
 - Comparison with SOL width models: semi-analytic (ORNL/UCSD), 2-D SOLPS (ORNL) and UEDGE (LLNL), kinetic XGC-0 (CPES)
 - Comparison with turbulence characteristics
- Edge biasing with local electrodes and probes for SOL width control convective cell generation test

New tools: fast IR camera (09), BES (10), divertor biasing capability (10), LLD(10)

2011-2013

- More detailed comparisons with above codes and new diagnostics; XGC-1 (CPES) turbulence code will also be used for detailed comparisons
- Upgraded biasing capability, if warranted

New tools: new divertor diagnostics

Outline

- SOL and divertor physics
- Pedestal and ELM physics toward pedestal width prediction and improved understanding of ELM suppression
 - *** Critical for ITER: *limit on ELM* $\Delta W/W_{tot} < 0.3\%$
 - Characterization and theory comparison at low R/a
 - Active control with 3-D fields

2011 JRT: (proposed) pedestal physics

Variety of ELM regimes observed in NSTX, with ELM size generally decreasing with collisionality

W_{MHD} [kJ] D_{α} [au] Many ELM types observed in 200 NSTX, including promising Large (Type I 190 180 LAM Jam May small ELM regime Occurrence of large ELMs at • 170 low v^* motivates research 200 Mid (Type III) 190 7 Mixed 2 180 ▲ Type \ 6 170 0 1.5 220 Small (Type V 210 5 ഷ് 200 **κ=2.**2 4 0.5 190 δ=0.75 240 4 Mixed (1 220 3 2 200 180 0 2 0.1 v^{e} 10 $0.34\,0.36\,0.38\,0.40\,0.42\,0.44\,0.34\,0.36\,0.38\,0.40\,0.42\,0.44$ Time [sec] Time [sec] Maingi PoP06

Studies of R/a pedestal dependencies aim to determine the range of applicability of edge stability models

 ELITE calculations suggest existence of high P_{ped} at low R/a and constant pedestal width

> Requires low v^* -> high T_{ped}

- Pedestal dependence on R/a investigated in NSTX, DIII-D, and MAST through ITPA
 - No clear evidence of larger pressure gradients at low R/a
- Lithium conditioning eliminated ELMs
 - Density profile shift -> pressure profile broadening -> ELM stabilization (PEST)
 - Mystery: diamagnetic stabilization predicted to stabilize peeling modes in pre-Lithium discharge also (ELITE)

Maingi, PRL submitted

3-D fields used to alter ELM behavior - provides a possible scenario for impurity and radiation control of ELM-free Lithium discharges

ONSTX

NSTX 2009 PAC meeting – Boundary Physics (Maingi)

ELM and Pedestal Physics plan

2009-2010

- Assess edge stability of different ELM types, including impact of aspect ratio on pedestal gradients and widths
- Identify dependence of ELMs on $\delta,\,\kappa,\,\text{SN}$ vs. DN
- Assess effect of lithium on ELM regimes
- Assess effects of 3d fields on edge stability
- Compare pedestal parameters with XGC-0

New tools: LLD (10), edge SXR for fast T_e reconstruction (10)

2011-13

- n=1 feedback with arbitrary n=2,3 for ELM stability (2nd SPA)
- High m,n RMP impact on ELMs and heat flux (internal coils)

New tools: extra edge Thomson channels, NCC upgrade for higher *m/n*, new divertor diagnostics

NSTX boundary physics program effectively utilizes facility and diagnostic enhancements in 2009-2011

- Particle control and fueling program
 - Uses LLD and associated new diagnostics
- SOL and divertor physics for prediction of plasma-wall interaction footprint using theory-based cross-field transport models
 - Uses new diagnostics (e.g. BES, div. bolometry, fast IR camera, Ly- α)
 - Additional edge Thomson channels (incremental) very important
- Pedestal and ELM physics toward pedestal width prediction and improved understanding of ELM suppression
 - Uses new diagnostics
 - Additional edge Thomson channels (incremental) critical

Backup

ELM-free H-mode induced by lithium wall coatings

- Pre-Li, Post-Li
- Lower NBI to avoid β limit
- Lower n_e
- Similar stored energy
- H-factor 40%[↑] (more than hi δ,κ)
- Higher P_{rad} /P_{heat}
- ELM-free, reduced divertor recycling

NSTX 2009 PAC meeting – Boundary Physics (Maingi)

Global β_N limit encountered before edge stability limit with lithium coatings

T_e, T_i increased and edge n_e decreased with lithium coatings

Heat flux profile becomes more peaked and triangular with Lienhanced ELM-free operation

NSTX

NSTX 2009 PAC meeting – Boundary Physics (Maingi)

2-D edge transport calculations with SOLPS begun for two equilibria with new center stack

First calculations: heat flux predicted to peak at outer divertor (normal flux expansion case)

24

Heat flux can be reduced by either higher cross-field transport or higher recycling/radiation (normal flux expansion)

- D, $\boldsymbol{\chi}$ increased by factor of 4
 - SOL widths double
 - Peak heat flux decreased

- Target recycling coefficient increased R=0.99 and carbon concentration varied
 - Need lots of carbon to bring down q_{peak}

L-H studies focus on main parametric dependencies

- Measure empirical dependencies of L-H transition power on shape, rotation, and major external parameters (I_{p}, B_{t}, n_{e})
- Test recent L-H theories, e.g. Gyrocenter shift theory for origin of E_r
- New tools: new divertor and X-point diagnostics, center stack upgrade for wider I_p, B_t range

Divertor bolometer and surface probe diagnostics

High resolution tangential SXR system (Johns Hopkins) will provide fast Te with good spatial resolution for pedestal studies

- $T_e(r,t)$ with ≤ 1 cm, few µs resolution (n_e , n_z with $\int ne \, dl$ constraint)
- Extend core electron/particle transport studies to pedestal (ELM, pellet)
- ELM structure, precursors, non-thermal electron distribution
- Develop ME-SXR for feedback and control (ELM, position, RWM)

Novel divertors may be required for heat flux management in NSTX-U

- X-divertor possible with center stack upgrade
- Super-X divertor with incremental budget (left)
- Snowflake divertor being assessed (right)

First calculations: heat flux predicted to peak at outer divertor (X-divertor case)

- Outer divertor and inner divertor peak heat flux comparable
- Caveat: configuration violates 1° engineering min. angle criterion B_θ/|B|
 - Angle highly dependent on S-S $_{\rm OSP}$ for outer divertor, from 0.1-0.5°
 - Profiles at midplane are exponential and monotonic

30

Divertor spectrometer will provide new divertor measurement capabilities needed for detailed divertor studies

- Divertor plasma profiles T_i , n_e , T_e , v, Γ_i
 - -Line and continuum profiles
 - —Spectral line Doppler broadening for T_i profiles
 - —Spectral line Doppler shift measurements for flow velocities
 - -Balmer or Paschen series line broadening for n_e profiles, line intensities for T_e profiles in recombining divertor
 - —Particle influx profiles molecular, neutral, impurity ions
- Fiber-optic array is already installed on NSTX
- Prototype of ITER divertor monitor

Ly- α array will be used for recycling measurements from highly reflective LLD

- Mirror-like LLD surface will complicate interpretation of visible (400-750 nm) spectroscopic diagnostics
- AXUV diode arrays with bandpass filters measure Ly-α n=1-2 H/D transition at 121.6 nm, where reflections are negligible

Supersonic Gas Injector will be upgraded to improve fueling efficiency

- Present capabilities
 - Controllable calibrated flow rate
 - Γ = 10 200 Torr I / s
 - Multi-pulse control
 - Controllable radial position
 - High H-mode fueling efficiency 0.1-0.4

Upgrade	Benefit
PCS feedback & control	Fueling control
New nozzle design for increased gas jet density	Higher fueling efficiency
Cryogenic nozzle for deuterium molecular cluster formation	Higher fueling efficiency
Compactness for possible placement in new CS	H-mode access and fueling

Compact Pellet Injection System planned for NSTX

- NSTX machine size and target plasmas well matched to simplified pellet injection system
 - 8 barrels, 1.0 2.7 mm diameter (5x10¹⁹ 9x10²⁰ atoms), 200-1500 m/sec pellet speed
 - High β discharges can have a |B| well, such that pellet drift could be inward, even from outer midplane
- Simplified advanced design utilizes self contained LHe refrigerator – external LHe supply not required
- Several trajectories possible innermost one part of center stack upgrade

A Compact Toroid injection system could provide real-time density profile control with momentum injection

- Research Plan:
 - Establish localized fueling and conduct transport studies
 - Establish momentum injection
 - Establish multi-pulse fueling

* Previous facilities too small to study localized core fuelling

The CTF-II injector (in storage at PPPL)

ONSTX

Jan. 19, 2009

Novel SWIFT diagnostic enables measurements of 2-D flow patterns in edge

- Diagnostic images flowing plasma
- Based on Doppler shift of He II line measurements with crossed interference filters

Wavelength (nm)

Divertor SXR system (Johns Hopkins - incremental budget) will provide divertor n_e, Te

- Narrow-band (80-100 Å) 'radiometers' based on VUV TG + AXUV diodes
- 2-D T_e, n_z, n_e (in conjunction with TS, $\int n_e dI$, or spectroscopy constraint)

Combination of center stack upgrade (2 MA, 1 T), 2nd NBI, and successful density control program allows access to wide collisionality range

- Low v^* affects:
 - Pedestal bootstrap current, which in turn determines peeling/ballooning stability for Type I ELM onset
 - Pedestal transport
 - Scrape-off layer transport, both parallel and cross-field
 - Ability to mitigate divertor heat flux through radiation and detachment

