

Supported by

High Harmonic Fast Wave Progress and Plans

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Gary Taylor, PPPL

for the NSTX Team

25th NSTX Program Advisory Committee Meeting (PAC-25) LSB-318, PPPL February 19, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Outline

- Role of HHFW in NSTX Program
- Recent Advances in HHFW Research & Modeling
- Research Strategy for 2009-11 & Beyond

30 MHz HHFW Heating & CD Aims to Support Non-Inductive Ramp-up, Bulk Heating & q(0) Control

Start-up/Ramp-up Requirements

 $(1\rightarrow 2)$ Target plasma generated with CHI, guns or PF-only. ECH likely needed to heat plasma to allow HHFW coupling (2) I_P overdrive using bootstrap & HHFW CD $(2\rightarrow 3)$ HHFW generates sufficiently high I_P to absorb NBI (4) HHFW provides q(0) control & bulk heating

Improved HHFW Heating in 2008 Provided Important Tool for Transport Studies

- NSTX record T_e(0) ~ 5 keV & strong T_e gradient
 - Supports high-k scattering study of small scale turbulence in He & D₂
- First HHFW core heating in D₂ NBI H-mode achieved with Li
- Experiments in 2009-10 will use Li injection & LLD to improve HHFW heating & CD in H-mode

PAC23-03 PAC23-10

@NSTX

4

HHFW Experiments During Early I_p Ramp-up Show Good Electron Heating in D_2 with CD Phasing

- HHFW coupled into $I_p \sim 300$ kA, $n_e(0) \sim 6x10^{18}$ m⁻³
- CD phasing in D₂ at low I_p required for ramp-up studies
- HHFW-assisted ramp-up experiments, including phase scans & Li conditioning, are planned for 2009

PAC23-10 PAC23-11

Improved Heating due to Better Understanding of Important Role of Edge-Wave Interactions

- Edge power loss increases when perpendicular propagation onset density is near antenna
- Heating efficiency improved
 (∆W_{EF}) by reducing edge density
 (n_{edge}) with Li conditioning →
- Strong first pass absorption in NSTX ideal for studying competition between core rf heating & edge-wave power loss

 $P_{rf} \sim 1.1 \text{ MW}$ in D plasmas (~230 ms RF pulse duration)

Improved ΔW_{EF} at $\Delta \phi$ = -30° in D plasmas with Li conditioning, even with shorter 67 ms RF pulse

⇒ Edge-wave interactions could be important for ITER ICRF heating

3D Codes Using Full Toroidal Spectrum to Include Surface Damping and CD Effects

AORSA $|E_{RF}|$ field amplitude with 101 n_{ϕ} modes

- Waves propagate around plasma axis in + B_{ϕ} direction
- Wave fields very low near inner wall
- Edge loss mechanisms will be identified experimentally and included by RF SciDAC in advanced codes

Stronger Interaction Between Antenna & Divertor Along Field Line at Lower Phase/Longer Wavelength

- Do not know how much power is lost through interaction:
 - Implications for CD & HHFW-ELM interaction
 - Incorporate divertor interaction into 3-D ray tracing & full wave modeling
- 2009 HHFW experiment to study edge effects in L- and H-mode

Building on Positive 2007-8 Results, Antenna Upgrades Increase Coupled Power & ELM Resilience

- Double feed upgrade implemented for 2009 run:
 - P_{rf} increased from
 ~ 3 MW to ~ 6 MW
 - 4-6 MW likely required for BS overdrive ramp-up
 - Permits larger plasmaantenna gap, reducing NBI fast ion interaction with antenna
- ELM resilience system will be added in 2010-2012:
 - Electronic detection &
 P_{rf} notch at ELM in 2010
 - Hybrid ELM dump in 2011-2012

Motional Stark Effect (MSE) Measurement of Core HHFW CD Profile Consistent with Modeling

- Measured CD profile consistent with AORSA prediction using MSE-constrained LRDFIT equilibrium, full toroidal spectrum, Ehst-Karney approximation & trapping
 - MSE & AORSA $I_{rf} \sim 20 \text{ kA}$
 - MSE reconstructions essential for good match with measured CD

• Measured q(0) drops from 1.0 to 0.6 with $P_{rf} \sim 1.2 \text{ MW}$

- Counter-CD should provide tool to raise q(0) in advanced scenarios, avoiding sawteeth & locked modes
- MSE-LiF will provide q(r) without heating NBI, dramatically enhancing HHFW CD research in 2011

Edge Loss Mechanisms will be Identified & Included in RF Codes; RF-Fast Ion Interaction will be Modeled

- Search for edge RF power loss due to collisions, sheaths, PDI, antenna reactive field & propagating FW:
 - Using edge reflectometry, edge CHERS, PDI probes, visible & IR cameras, core reflectometry with 30 MHz δn(r) [& δE(r)] capability, and enhanced MPTS [incremental]
- Measure & Model RF-fast ion interaction seen previously on NSTX:
 - Perpendicular & tangential FIDA, NPA
 - HHFW-NBI interaction will be modeled with CQL3D (Bob Harvey - CompX)
 - Simulate counter-CD for advanced scenarios

HHFW Research Plan for 2009-10

2009:

- Understand physics of the edge-wave interactions using upgraded double fed antenna:
 - Employ extended edge measurements & guidance from rf modeling
- Heating & CD studies in D₂ H-mode with Li injection
- Coupling/heating into low I_p, T_e during I_p ramp-up
- HHFW heating of H if L-H threshold is studied in H & He PAC23-12

2010:

- HHFW Heating, CD and I_p ramp-up in D₂ H-mode using ELM resilience system [R(10-2) milestone]:
 - Use larger plasma-antenna gap to reduce NBI fast ion interaction with antenna
 - Fast feedback control for greater stability & higher power coupling
 - LLD to likely further reduce antenna neutral pressure

HHFW Research Plan for 2011-13

2011:

- Heating & CD operation with NBI H-mode with fully upgraded HHFW antenna, Li injection & LLD:
 - Benchmark core CD against advanced RF codes upgraded to include interaction with fast ions & use FIDA to diagnose interaction
- HHFW coupling during I_p ramp-up with 28 GHz* ECH-assisted start-up
 - MSE-LiF to provide q(r) without heating NBI

Research Utilizing New CS and/or 2nd NBI (2012-2013):

- High power long pulse HHFW heating & CD with improved heating at $B_t(0) \sim 1 \text{ T}$, made possible with new center stack
- HHFW to support very long pulse scenario
- HHFW heating of 28 GHz* ECH-assisted CHI & PF-only startup

* 28 GHz 350 kW ECH only possible with incremental funding

Understanding Importance of Edge-Wave Interaction has Enabled HHFW to be Powerful Tool

- Heating & CD performance significantly improved by increasing B_t(0)
 & through edge density pumping via Li conditioning
- 2009 HHFW experiments seek better understanding of edge-wave interaction physics
- Antenna upgrades in 2009-10 provide higher power, reduced fast ionantenna interaction & better resilience to ELMs
 - HHFW experiments also benefit from combining LLD & Li injection
- HHFW experiments in 2009-11 will study heating & CD in D₂ H-mode & heating during I_p ramp-up
- Initial HHFW CD measurements are now consistent with AORSA & TORIC simulations:
 - RF SciDAC initiative important for studying edge loss & providing accurate CD estimates

Backup Slides

NSTX Results Indicate Surface Wave Damping Could be Important for ITER ICRF Heating

- $k_{\phi} \sim 4 \text{ m}^{-1}$ at 53 MHz for CD phasing in ITER
- Propagation onset
 density is relatively
 low: ~ 1.4 x 10¹⁸ m⁻³
- For scrape off density above onset density, surface wave damping should be significant

Well Defined Antenna Spectrum Ideal for Controlling Deposition, CD Location & Direction

HHFW antenna extends toroidally 90°

 Phase between adjacent straps easily adjusted between Δφ = 0° to Δφ = 180°

Strong "Single Pass" Absorption Ideal for Studying Competition Between Core & Edge Power Loss

18

Modeling Must Include Power Spectrum of Launched Waves for Quantitative Agreement with MSE

- Large edge field pitch affects wave spectrum in plasma core
- Current driven by the back propagating lobe is localized well off-axis and lost due to trapping effects

ECW/EBW Research Plan for 2009-11

2009-10:

- Collaborate with MAST 28 GHz ECH/EBWH startup experiments
 - ORNL providing 350 kW gyrotron this year
 - MAST 28 GHz system uses grooved center stack tile to change polarization from O- to X-mode which then 100% coverts EBW near axis

2011:

- 350 kW 28 GHz ECH-assisted* CHI, PF ramp and plasma gun start-up with fixed horn antenna
 - Transition from ECH-assisted startup to HHFW current ramp-up
 - Study whether Li evaporation & LLD can improve EBW coupling with fixed horn antenna during current ramp-up

* 28 GHz 350 kW ECH only possible with incremental funding

