PHYSICS AND ENGINEERING GOALS FOR A BEAM EMISSION SPECTROSCOPY DENSITY FLUCTUATION DIAGNOSTIC ON NSTX

> G. McKee R. Feder, D. Johnson, G. Labik, B. Stratton

CONCEPTUAL DESIGN REVIEW PRINCETON PLASMA PHYSICS LABORATORY APRIL 24, 2008

MOTIVATION TO IMPLEMENT A BES SYSTEM ON NSTX

- NSTX provides unique opportunity for advanced studies of Turbulence & Transport in the ST regime:
 - Numerous modes of operation: L, H, EP-H, RS modes
 - Array of profile diagnostics
 - Mature suite of fluctuation diagnostics (Scattering, GPI, Reflectometry, probes)
- Intriguing observations on NSTX:
 - Near neoclassical ion confinement in some regimes (H-mode)
 - Clearly non-neoclassical in L-mode
 - Differences in χ_I and χ_{MOM}
- Unique opportunity to study underlying turbulent transport processes in ST
 - Predicted inherent stability against longer-wavelength modes from high β' and high magnetic shear (C. Bourdelle)
- BES will complement available fluctuation diagnostics and provide added long-wavelength, 2D capability
 - Wide fluctuation phase space to be investigated: low-k, high-k, core, edge, n, T, B, f fluctuations
- Opportunity to compare and contrast turbulence behavior in ST and Tokamak
 - Extend dimensionless scaling studies (Aspect ratio, β)
- Longer-Term: Contribute to the validation of turbulence simulations

CHALLENGES

- Viewing geometry: pitch angle, radial variation
- Carbon II emission lines near 658 nm (in desired spectral band)
- Limited access (coils, other diagnostics)

OPPORTUNITY

• Large ρ_I on NSTX (low B_T): access to higher normalized wavenumber

BES SIGHT LINES SHOULD BE ALIGNED NEARLY TANGENT TO LOCAL FIELD LINE AT INTERSECTION OF SIGHT LINE & NB

OBSERVE RED-SHIFTED BEAM EMISSION

- Improved spatial resolution relative to blue-shifted view
- Access to view ports on machine (Bay-K virtually accessible)

View of Z=50 mm optimal lines with a 6" cylinders In the previous studies we were looking at an 8" bore Close to the "Purple" cylinder

Simulated Beam Emission Spectrum

- 90 kV Deuterium beams

Edge Carbon lines potentially problematic:

- Extra photon noise
- Delocalized fluctuation signal
- Error to normalization, ñ/n

Solution (not ideal):

- Angle-tunable filter: design to avoid CII
- tilt-tune to optimize total signal
- small signal: minimal photon noise, low frequency fluctuations

"MSE" SPECTRA SHOW CII LINES

- Similar view to BES

- Time-integrated over shot (includes beakdown pulse at startup?)

G. McKee - BES CDR - 4/24/2008

FIDA SPECTRA SHOW SMALLER CII LINES

- Beam Emission appears to be ~10* more intense than CII
 - but viewing geometry is different (vertical v. diagonal)

- If CII intensity ~10% of beam emission, should be OK!
 - photon noise contribution minimal
 - edge light defocused, very low-k resolution: low frequency, spectral isolation

MADISO

TURBULENT EDDIES SCALE WITH CORRELATION LENGTH: BIG ADVANTAGE FOR NSTX

SPATIAL RESOLUTION TARGETS FOR NSTX BES

- Several factors limit actual spatial/wavenumber resolution:
 - Alignment of optical sightline to flux surface/field line
 - Helical field lines through sightline/beam intersection (~1-5 cm)
 - Finite lifetime of excited neutral beam atoms (~1.5 cm)
- Requires full PSF/STF calculation (TBD)

- Design goal: 0.4 < r/a < 1.0
 - Observe regions of greatest interest to turbulence/transport studies (mid-radius to edge), also of interest to XAE studies
 - Seek 32 simultaneous spatial detection channels (optimize physics)
- Deploy fiber bundles in image plane to cover much of plasma

BES REQUIRES HIGH THROUGHPUT (ETENDUE) (LOTTA FIBERS, BIG OPTICS)

- Light collection, $E = A * \Omega$, A=collection area, Ω = subtended solid angle
- In principle, calculate SNR ratio from beam intensity, plasma density, excitation cross-sections, emission rates, expected turbulence characteristics
- In practice, use DIII-D experience as a reference point:
 - Beam intensities are very similar
 - Plasma densities are similar
- $E_{D3D,BES} = 1.6 \text{ mm}^2 \text{-ster} (11 1 \text{-mm fibers}, f/2)$
- NSTX: fill fibers to actual N.A. limit: f/1.3 f/1.5 (utilize fibers more efficiently)
 - verify that fibers can accept this light cone
 - observed by various researcher groups
- 6 fibers/channel, 2(radial) x 3 (poloidal): E_{NSTX,BES} = 1.52 mm²-ster
 - Alternative: 9 fibers/channel: 2.3 mm²-ster (50% higher throughput)
- Optical magnification: ($\Delta X \sim 2$ cm), M \sim 7 (midradius), M \sim 5 (edge)

SUMMARY OF ENGINEERING PARAMETERS TO ACHIEVE PHYSICS GOALS

- Spectral band: 657-660 nm, but obtain 659-662, angle-tune to proper range
 - CII emission lines are a concern
 - Blue-shifted viewing geometry not feasible (engineering), would achieve poorer resolution
- $k_{\perp}\rho_{I}$ 1 ==> ΔX = 2-5 cm, 2 cm optical resolution
 - beam-sightline geometry, optics, helicity, finite lifetime will reduce
- Radial range: 0.4 < r/a < 1
 - measure edge region: interesting physics (turbulence & XAE), overlap with GPI
 - Deeper core (r/a < 0.4) conceivable as future expansion
- Etendue: 1.5 mm²-ster (6 1-mm fibers@f/1.5), up to 9 fibers for 50% increase
 - Similar or greater throughput compared with DIII-D BES
- Frequency: $f_{SAMPLE} = 2 MHz [f=w/2\pi, k_{peak}v_{ExB}/2\pi], v_{ExB}$
- Detection System: Employ DIII-D like system: optimized for ultra-low-noise, high light throughput:
 - cryogenics necessary? Expensive and difficult, modest gain at high signal
 - Avalanche photodiodes vs. PIN/cooled-preamp
- Russ will show us how to accomplish this!

BES MEASURES **S**PATIO-**T**EMPORAL **C**HARACTERISTICS OF "LONG-WAVELENGTH" ($\kappa_{\perp}\rho_{I} < 1$) **D**ENSITY **F**LUCTUATIONS

OPPORTUNITIES AND ISSUES FOR CONSIDERATION

- High T_I, low B_T ==> Large ρ_I, L_{c,r} High spatial resolution and wavenumber sensitivity, L_{c,r}: 2-20 cm (S. Kubota, APS-06, S. Zweben, GPI)
- Spatial resolution and radial coverage will depend sensitively on local magnetic field pitch angle:
 - 3 NB sources
 - Viewing geometry considerations
 - Core vs. Edge
 - Focus on core turbulence?
 - Flat q-profile to large radius
 - Diagnostic Discussion next week...
- Carbon edge lines near 658 nm?
- BES can study:
 - Alfven eigenmode structure
 - Pedestal/ELMs
 - MHD structure

VSTX

BES MEASUREMENTS APPLICABLE TO WIDE VARIETY OF PLASMA INSTABILITIES

Measurements provide important data on a wide range of phenomena:

- Energetic-particle-driven modes: Alfven Eigenmodes
- Neoclassical Tearing Modes
- Sawtooth interchange effects
- Pedestal dynamics
- Edge Localized Modes
- Edge Harmonic Oscillation (in Quiescent H-mode)
- Quasi-Coherent Mode (in Enhanced D_{α} H-mode)
- Resonant Magnetic Perturbation Effects
- Edge Scrape Off Layer interaction: "blob" generation

OVERVIEW OF THE BEAM EMISSION SPECTROSCOPY SYSTEM AT DIII-D

Morgan, the Graduate Student

G. McKee - BES CDR - 4/24/2008

BES DETECTOR AND CONTROL SYSTEM PROVIDES INTEGRATED CONTROL AND FULLY REMOTE OPERATIONS

CUSTOMIZED, CRYOGENICALLY-COOLED TRANSIMPEDANCE PREAMPLIFIER PROVIDES ULTRA-LOW-NOISE SIGNAL AMPLIFICATION

Cryogenically Cooled Components

G. McKee - BES CDR - 4/24/2008

CUSTOMIZED DETECTOR MODULE AND PREAMPLIFIER PROVIDE ULTRA LOW-NOISE SIGNAL DETECTION

Input/Exhaust Vacuum-jacked LN2 lines

Vacuum pump lines (operated near 30 mTorr)

Copper LN2 line provides thermal transfer to PIN photodioes and first-stage FET

FACTOR OF 30-50 INCREASE IN SENSITIVITY TO PLASMA DENSITY FLUCTUATION POWER WITH UPGRADED BES SYSTEM

